
The Open University

Department of Physics and Astronomy

SELF-REPLICATION, CONSTRUCTION AND COMPUTATION

William Michael Stevens

BSc(Hons.) University of Kent, 1998

Submitted for the Degree of

Doctor of Philosophy

28th October 2009

Abstract

Research into autonomous constructing systems capable of constructing duplicates of
themselves has focused either on highly abstract logical models, such as cellular automata,
or on physical systems that are deliberately simplified so as to make the problem more
tractable. There are also several system-level proposals for physical self-replicating man-
ufacturing systems.

While cellular automata are adequate for modelling the control and information pro-
cessing aspects of a self-replicating system, these models do not contain any notion of
material parts and are poor at modelling those features of a system that depend upon the
motion and connectivity of its components.

Physical models of systems with thousands of parts have the disadvantage that they
are expensive and time consuming to develop and build.

To overcome these limitations a simulation environment is presented at a level of
abstraction that intrinsically models motion and connectivity, and in which parts can be
neither created nor destroyed nor transformed into other parts. This level of abstraction
lies somewhere between cellular automata and physical systems. Component parts within
this environment are designed to be as simple as possible.

A self-replicating programmable constructing machine has been implemented in this
environment. The machine takes a disorganised collection of parts as its input and con-
structs machines from these parts. As a special case it can be programmed to construct
a duplicate of itself. The machine is made from 59,615 component parts of which 49,152
make up the machine’s memory.

This is the first demonstration of a self-replicating programmable constructing ma-
chine in an environment more physically realistic than cellular automata and in which
component parts are deliberately chosen so as to be as simple as possible.

iii

iv

Table of Contents

List of Figures ix

List of Tables xiii

Acknowledgments xv

Chapter 1 Introduction 1
1.1 Self-replication . 1
1.2 Open problems related to self-replicating systems 2
1.3 Terminology . 3
1.4 Thesis structure . 3

Chapter 2 Review of Research into Self-Replicating Programmable Con-
structing Machines 5

2.1 Self-replication in living systems . 6
2.2 Von Neumann’s work . 8

2.2.1 An abstract self-replication process 8
2.2.2 Von Neumann’s 5 questions . 9
2.2.3 A cellular automaton model of a self-replicating programmable con-

structor . 10
2.3 Works directly related to von Neumann’s work 17

2.3.1 Thatcher and Codd . 17
2.3.2 Laing’s kinematic automaton system 18

2.4 Simple self-replicating systems . 19
2.4.1 Template based systems . 20
2.4.2 Langton’s self-replicating loops . 21
2.4.3 Summary . 22

2.5 Physical self-replicating constructors . 24
2.5.1 Systems derived from living systems 24
2.5.2 Von Neumann’s kinematic model 25
2.5.3 Moses’ programmable constructor 28
2.5.4 Self-replicating modular robots . 31
2.5.5 The RepRap project . 32

2.6 Proposed and conceptual self-replicating machines with a large construc-
tional capability . 33
2.6.1 NASA study . 33
2.6.2 Drexler’s assembler . 34

v

2.7 Simulating self-replicating machines . 35

Chapter 3 Exploratory Work 39

3.1 A 2D discrete space kinematic environment 39

3.1.1 Introduction . 39

3.1.2 Detailed description of CBlocks . 40

3.1.3 A self-replicating programmable constructor in the CBlocks envi-
ronment. 43

3.1.4 Physical realism in the CBlocks environment 48

3.2 A 2D continuous space kinematic environment 50

3.2.1 Introduction . 50

3.2.2 Detailed description of the Nodes environment 50

3.2.3 Signals . 53

3.2.4 Part types . 54

3.2.5 A self-replicating machine in the Nodes environment 54

3.2.6 Filaments and self-assembly . 54

3.2.7 Subsystems of the self-replicating machine 56

3.3 Evaluation and research directions . 58

3.4 Two or three dimensions? . 64

Chapter 4 A 3D Kinematic Environment with 6 Part Types 65

4.1 Introduction . 65

4.2 Describing parts . 66

4.2.1 Evolution of a universe . 70

4.3 Simple mechanisms . 74

4.3.1 Signals and logical values . 74

4.3.2 Logic gates . 75

4.3.3 Edge detection . 76

4.3.4 Signal loops . 76

4.3.5 Flip flops . 77

4.3.6 1:4 pulse converter . 79

4.3.7 Transporting parts . 79

4.3.8 Encoders and decoders . 80

4.3.9 Counters and registers . 81

4.3.10 Memory . 82

4.4 Methodology and implementation . 85

4.4.1 Simulating the CBlocks3D environment 85

4.4.2 Describing structures . 87

4.4.3 Visualisation and debugging . 89

4.5 Summary . 90

Chapter 5 A Self-Replicating Programmable Constructor in the CBlocks3D
environment 91

5.1 Design considerations . 91

5.1.1 Managing parts . 92

5.1.2 Controlling the machine . 95

5.2 Overview . 96

vi

5.3 Collecting parts . 98
5.4 Sorting Parts . 98

5.4.1 The orientation cycler . 100
5.4.2 Nor filter and wire filter . 103
5.4.3 Rotate filter . 103
5.4.4 Slide filter . 103
5.4.5 Fuse filter and unfuse filter . 107

5.5 Part storage and dispensing . 111
5.6 Orientation . 116
5.7 Construction arm . 116
5.8 Memory . 123
5.9 Address decoder . 126
5.10 Instruction set . 128
5.11 Control unit . 130

5.11.1 Program counter and call stack . 130
5.11.2 Memory address counter and comparator 133
5.11.3 Call and orientation registers . 136

5.12 Programming the SRPC . 137
5.13 Validating the design . 139

Chapter 6 Computing in Kinematic Environments 145
6.1 Mechanical computing machines . 146
6.2 Logic circuits in a system of repelling particles 147

6.2.1 Some basic mechanisms . 148
6.2.1.1 Wire . 148
6.2.1.2 Cross . 149
6.2.1.3 Corner (Type 1) . 149
6.2.1.4 Corner (Type 2) . 149
6.2.1.5 Changer . 149
6.2.1.6 Fanout . 150
6.2.1.7 Combine . 150
6.2.1.8 Both . 150
6.2.1.9 Hold . 151

6.2.2 Circuits . 152
6.2.3 A dual-rail logic gate . 152
6.2.4 Summary . 159

6.3 A kinematic Turing machine . 160
6.3.1 Notation and Petri net diagrams . 160
6.3.2 Turing machines - definitions . 162
6.3.3 A Turing machine in the CBlocks3D environment 163

6.3.3.1 Overview . 163
6.3.3.2 Operation . 165

6.3.4 Detailed description of mechanisms 166
6.3.4.1 Data Tape DT . 166
6.3.4.2 Bit Reading mechanism BR 168
6.3.4.3 Selection mechanism SL . 169
6.3.4.4 Condition Action mechanism CA 171

vii

6.3.4.5 Conditional Tape Moving mechanism CTM 171
6.3.4.6 Unconditional Tape Moving mechanism UTM 172
6.3.4.7 Sequencer SQ . 172
6.3.4.8 Plane Moving mechanism PM 178
6.3.4.9 Trigger mechanism TR . 180
6.3.4.10 Program Plane PP . 181

6.3.5 Summary . 183

Chapter 7 Discussion and Conclusion 185
7.1 Limitations . 187

7.1.1 Construction program design . 187
7.1.2 Arrangement of parts in the machine’s environment 188
7.1.3 Finite machine size . 188
7.1.4 Synchronicity . 188
7.1.5 Construction arm limitations . 189

7.2 Future work . 190
7.2.1 Variations on the environment . 190
7.2.2 Kinematic computing . 190
7.2.3 Physical implementation . 190

7.2.3.1 Components mounted on floating discs 191
7.2.3.2 Fluidic logic . 191

7.3 Concluding remarks . 191

Appendix A CBlocks3D Implementation 193

Appendix B Portions of the Construction Program 223
B.1 Memory Module . 223
B.2 1 to 4 Pulse Converter . 228

Bibliography 230

Attached CD — this contains software and supporting files referred to in the
thesis.

viii

List of Figures

2.1 The replication process in prokaryotic cells. 6

2.2 The 29 states of von Neumann’s cellular automaton. 11

2.3 A Pulser organ which outputs 111 at b when excited with 1 at a. 13

2.4 An organ which permits sequences of excitations input at a1 and a2 to cross
over to outputs b1 and b2 respectively. 13

2.5 The Construction Arm. Appropriate sequences of signals at a and b can
cause the arm to grow, turn corners, retract, and transform Unexcitable
components into other components. 14

2.6 A schematic diagram of von Neumann’s self-replicating automaton. 14

2.7 A representation of Nobili and Pesavento’s implementation of von Neu-
mann’s self replicating automaton. 15

2.8 The two parts of Penrose’s simple self-replicating system. 20

2.9 A random arrangement of Penrose’s parts. 20

2.10 Parts replicating a configuration. 20

2.11 Penrose’s conception of a template-based self-replicating system. 21

2.12 Langton’s self-replicating loop after a single replication cycle. 22

2.13 Graphical representation of Moses’ constructor. 29

2.14 A photo of Moses’ constructor. 29

2.15 A basic part in Moses’ system. 30

2.16 The self-replicating modular robot of Zykov et al. 32

2.17 RepRap 3D self-replicating printer. 33

2.18 Map of some existing work on self-replicating systems. 36

3.1 The geometrical structure of the SRPC. 44

3.2 The arrangement of the instruction tape. 44

3.3 The operation of the tape advancing mechanism. 45

3.4 The logical structure of the reader. 46

3.5 The logical structure of the copier. 46

3.6 The parent SRPC in the reading phase, part way through constructing a
child SRPC. 47

3.7 The parent SRPC part way through the copying phase. 48

3.8 A parent SRPC has produced a child. 48

3.9 Three generations of SRPCs. 49

3.10 The initial configuration of the environment. 57

3.11 The two filaments that form TC have been created. 58

3.12 TC assembling itself. 58

3.13 TC is beginning to duplicate IT. 59

ix

3.14 D dragging IT2 away from IT. 59

3.15 EFTR attaching itself to IT2. R is moving towards D 60

3.16 R causing D to release IT2. 60

3.17 EFTR folding up. 61

3.18 EFTR beginning a new replication cycle on IT2. 61

3.19 Part of the environment after several replication cycles. 62

4.1 NOT, OR, AND and NAND gates made from NOR gates. 75

4.2 Circuit for detecting the rising edge of a signal. 76

4.3 A sequence of signals stored in a loop of wire parts. 76

4.4 A gated signal loop incorporating two Nor parts. 77

4.5 A sequence of signals being copied from one loop to another. 77

4.6 A Set-Reset flip-flop made from Wire and Nor parts. 78

4.7 A Set-Reset flip-flop that makes use of Slide parts. 78

4.8 1:4 Pulse Converter for converting between pulse signal and 4-pulse signal
representations. 79

4.9 A path along which parts can travel. 79

4.10 An encoder and decoder for generating and detecting serial signal sequences. 80

4.11 A toggle flip-flop. 81

4.12 A toggle flip-flop with Value V and Load L inputs. 82

4.13 An 8-bit loadable synchronous counter. 83

4.14 A quadtree data structure. 86

5.1 Black box diagram of a programmable constructing machine. 91

5.2 Top-level schematic of the SRPC. 96

5.3 Graphical representation of the SRPC. 97

5.4 The detect mechanism. 99

5.5 A graphical representation of the detect mechanism. 100

5.6 A schematic diagram of the sorter mechanism connected to the detect mech-
anism. 100

5.7 A graphical representation of the sorter connected to the detect mechanism. 101

5.8 The arrangement of rotate parts in the orientation cycler. 101

5.9 The orientation cycler. 104

5.10 The nor filter. 105

5.11 The rotate filter. 106

5.12 The slide filter. 108

5.13 The fuse filter. 109

5.14 The unfuse filter. 110

5.15 A schematic diagram of the storage mechanism for a single type of part. . . 111

5.16 The storage mechanism for slide parts. 113

5.17 A graphical representation of the storage mechanism. 114

5.18 The orientation mechanism. 117

5.19 A schematic diagram of the orientation mechanism. 118

5.20 A graphical representation of the orientation mechanism. 118

5.21 A single joint between two paths in the construction arm. 120

5.22 A schematic diagram of the construction arm. 121

5.23 A graphical representation of the construction arm. 122

x

5.24 The construction head. 124
5.25 The arrangement of the memory signal loop. 125
5.26 The 6-bit AND-gate connected to each memory module. 126
5.27 The structure of the address decoder. 127
5.28 The selector mechanism for converting a static signal value to an offset. . . 128
5.29 Instruction decoder. 131
5.30 The control unit. 132
5.31 A single bit of the program counter and call stack. 133
5.32 A graphical representation of the program counter and call stack. 134
5.33 The memory address counter. 135
5.34 A graphical representation of the memory address counter. 136
5.35 An 8-bit comparator. 140
5.36 A graphical representation of the comparator. 141
5.37 A call register. 142
5.38 A graphical representation of a call register. 143

6.1 Tile behaviour specified as a set of cellular automaton rules 147
6.2 Wire . 148
6.3 Cross . 148
6.4 Corner (Type 1) . 148
6.5 Corner (Type 2) . 148
6.6 Changer . 148
6.7 Fan-out . 148
6.8 Combine . 148
6.9 Both . 148
6.10 Hold . 148
6.11 H1 . 151
6.12 H2 . 151
6.13 H3 . 151
6.14 H4 . 151
6.15 Two mechanisms joined via tile B . 152
6.16 Uni-directional gate with tap . 153
6.17 Dual-rail input detection mechanism . 154
6.18 Augmented hold mechanism . 156
6.19 Logic gate - Stage 1 . 157
6.20 Logic gate - Stage 2 . 158
6.21 A simple mechanism in state Sn. Constructs A and B are labelled. 160
6.22 A simple mechanism one time unit later in state Sn+1. 160
6.23 State diagram for a simple mechanism. 161
6.24 Two interacting mechanisms. 161
6.25 State diagram for CYC mechanism. 162
6.26 Petri net diagram for CYC and FLIP mechanisms. 162
6.27 Turing machine - Overview . 163
6.28 The DT mechanism for representing a binary string. (View 1) 166
6.29 The DT mechanism for representing a binary string. (View 2) 166
6.30 Petri net for DT. Moving back and forth. 167
6.31 Petri net for DT. Resetting and setting a bit. 167

xi

6.32 The BR mechanism for detecting the state of a single bit on a data tape. . 168
6.33 Exploded view of figure 6.32. 168
6.34 Petri net for BR. 169
6.35 The SL mechanism for conditionally moving the program plane. 170
6.36 Petri net for SL. 171
6.37 The CA mechanism that performs actions depending on information en-

coded on the program plane. 172
6.38 A different view of the CA mechanism . 173
6.39 Petri net for CA. 173
6.40 The CTM mechanism . 174
6.41 Petri net for CTM. 174
6.42 The UTM mechanism. 175
6.43 Petri net for UTM. 175
6.44 The SQ mechanism. 176
6.45 A different view of the SQ mechanism. 176
6.46 Petri net for SQ. 177
6.47 The PM mechanism. 178
6.48 A different view of the PM mechanism. 179
6.49 Petri net for PM. 180
6.50 The TR mechanism. 180
6.51 Petri net for TR. 181
6.52 The PP mechanism. 181
6.53 The PP mechanism. 182
6.54 Petri net for PP. PP being moved by PM. 182
6.55 Petri net for PP showing the action of SL on PP. 183

7.1 Graph showing this work in relation to region G. 186

xii

List of Tables

3.1 Part types supported by the CBlocks environment. 42
3.2 Operators used in Table 3.1. 43
3.3 Part types in the Nodes environment. 55
3.4 Frequency of the different types of part used in the CBlocks SRPC. 62
3.5 Frequency of the different types of part used in the Nodes SRM. 62
3.6 Roles of component parts in the CBlocks and Nodes environments. 63

4.1 Part types in CBlocks3D. 68
4.2 Graphical representations of parts. 69

5.1 Probability that a randomly chosen sequence of length l is a cycling sequence.102
5.2 Serial encoding used for dispensing parts. 115
5.3 Orientation of parts at part-output for different values of the orientation

register. 119
5.4 Serial encoding used for construction arm movements. 119
5.5 Instruction encoding scheme. 129

6.1 Comparison of Zuse’s Z1 with the control unit of section 5.11. 146
6.2 Input cases for the Dual-Rail Input Detect mechanism 155
6.3 Truth table for the logic gate . 159

xiii

xiv

Acknowledgments

Thanks to my family, friends and colleagues for support and encouragement during the
past six years. Thanks to my supervisors Professor Nigel Mason and Professor Uwe Grimm
for exactly the right amount of supervision.

xv

xvi

Chapter 1

Introduction

1.1 Self-replication

The idea of a machine making another machine similar to itself may seem unintuitive or

even paradoxical. Our everyday experience of machines that manufacture objects is that

the manufactured objects are a great deal simpler than the machine that made them.

Until recent times the only systems known to be capable of producing other systems

like themselves were living organisms. Until the nineteenth century many people held the

view that living organisms were made from a different type of substance from non-living

things and that it was this substance that somehow accounted for some of the seemingly

inexplicable properties and abilities of living things, such as their ability to respond to

their environment and to grow and reproduce. By the beginning of the twentieth century it

was known that living things are composed of the same type of matter as non-living things

and it became widely accepted within the scientific community that all of the processes

that occur within living things are mechanistic. Coupled with the increasing complexity

of man-made machines this understanding led to the recognition that there are general

principles of organization and control that apply to both machines and living things. The

field of cybernetics arose in response to this [72].

During the second half of the twentieth century it became possible to explain at the

molecular level how living things are able to give rise to other living things. An un-

derstanding of the process led to research into how the molecular mechanisms found in

living things arose, whether the process could be controlled and engineered, and whether

a similar process could be implemented in a non-biological machine.

2

1.2 Open problems related to self-replicating systems

There are a number of open problems related to self-replicating systems. The most im-

portant of these are stated here in order to clarify which of them this work attempts to

answer and which it does not.

One group of problems relates to the emergence and evolution of self-replicating sys-

tems:

1. What are the conditions that must be satisfied for a system to demonstrate open-

ended evolutionary change?

2. How did the first natural self-replicating systems arise on Earth?

3. How did the earliest living organisms acquire the organised structure and the infor-

mation processing architecture that they now possess?

4. Can artificial environments be designed in which self-replicating systems capable of

evolution can emerge spontaneously?

These questions are among those that the fields of Artificial Life and Theoretical

Biology seek to answer [6], [32].

A second group of problems relates to the design and engineering of artificial self-

replicating machines:

1. Can a robot be made that can construct other machines, including a replica of itself,

in an environment containing a collection of passive component parts?

2. Extending the above question, can such a robot be made to operate in an environ-

ment containing only materials that occur naturally in that environment such as

metal ores, other minerals, water and atmospheric gases?

3. Is there any limit imposed by the laws of physics on the scale at which this type of

robot can operate?

This work seeks an answer to the first question from the second group of problems.

Naturally these two groups of problems, the questions within them and the techniques

used to answer them are not distinct and contain many overlaps. So in attempting to

answer one question it should not be surprising that from time to time other questions

are touched upon.

3

For example, some of the early theoretical work on self-replication demonstrated that

artificial self-replication is not a logical impossibility, and showed how self-replicating

systems are capable in principle of growing in complexity from one generation to another.

This early work has implications for questions from both groups.

As a second example of the overlap between the two groups of problems, suppose that

we wanted to design an automated self-replicating factory to send to the Moon to produce

various items that would be useful to future human lunar colonists [22]. To be confident

that the factory would carry out the task that it was designed for we would need to be

sure that the factory would not undergo evolutionary change.

1.3 Terminology

The terms below are used throughout this thesis.

Self-replication: The act of a system causing a duplicate of itself to form.

Self-reproduction: Some researchers have reserved this term for the process of biological

self-reproduction or for self-replication with less than perfect fidelity. Others have

regarded the term as a less general term than self-replication in which all of the

processes involved in the replication of a system take place within the system itself.

For example according to this usage a virus could be called a self-replicating system

but not a self-reproducing system. However most researchers have regarded this

term as being synonymous with self-replication. This is the practice used in this

thesis.

Construction: The action of forming by the putting together of parts.

Programmable constructing system: A system that is capable of being programmed

to construct objects.

Self-replicating programmable constructing system: A system that is capable of

being programmed to construct objects and which is capable of constructing a du-

plicate of itself.

1.4 Thesis structure

Chapter 2 reviews previous work on self-replicating programmable constructing systems.

Chapter 3 describes two pieces of exploratory work that were undertaken shortly before the

4

formal commencement of the period of study that led to this thesis. The work on kinematic

automata in Chapter 3 helped to establish which direction this research should proceed

in, and led to the kinematic environment described in Chapter 4. This environment is

used for the self-replicating programmable constructor described in Chapter 5.

Chapter 6 contains unanticipated work that emerged as I became more familiar with

kinematic environments. This was done in parallel with the work in Chapter 5, but can

also be seen as the beginnings of an answer to a question about how the result of Chapter

5 can be simplified.

Chapter 7 summarises the main results of this thesis and lays out some directions for

further research.

The CD attached to this thesis contains software for simulating the work of Chapters

3,5 and 6.

Chapter 2

Review of Research into

Self-Replicating Programmable

Constructing Machines

A number of reviews of research into self-replicating systems have been published. The

earliest is that of Laing, which appears in Freitas and Gilbreath’s report on a 1980 NASA

study of an application of self-replicating systems for space missions [22]. Sipper [55]

completed a fifty-year review in 1998 which concentrated on cellular automata models

of self-replication but touched briefly on other models. Freitas and Merkle’s 2004 book

‘Kinematic Self-Replicating Machines’ [24] contains a comprehensive review section (part

of which borrows from that of Laing) covering all kinds of self-replicating systems but in

particular focusing on physical self-replicating systems.

This review has some overlap with these earlier reviews but a different and more specific

focus. The focus is on self-replicating programmable constructing machines as defined in

section 1.3. Characteristic examples of other self-replicating systems will be described,

but only to point out how they differ from programmable constructing machines, or how

they could be extended so as to become more like programmable constructing machines.

The level of attention given to each work depends on its relevance to this thesis. So

for example, a detailed description is given of the cellular automaton that von Neumann

used for his programmable constructing machine [70]. The related work of Thatcher [65]

is also examined. Considerable attention is paid to the works of Moses [44], Zykov et

al [74] and Bowyer [9], since these are the most significant attempts to physically realise

programmable constructing machines capable of self-replication. Less attention is given

6

to template-based replication schemes and loop-based replication schemes that have little

possibility of physical realisation or little constructive capability, and little attention is

given to proposals that lack quantitative definition unless, as in the case of Drexler’s early

work [17], the proposal brings some unique insights.

Since some of the systems described in section 2.5 were conceived in the context of a

particular application, these applications are described alongside the corresponding sys-

tems.

2.1 Self-replication in living systems

An outline of the process by which the simplest prokaryotic cells replicate is shown in

Figure 2.1

Figure 2.1. The replication process in prokaryotic cells.

Genetic material in the form of DNA contains information which directs the machinery

of the cell to construct all of the cell’s constituent parts, including components which play

7

a role in interpreting and processing information from the DNA, structural components

which give the cell its shape, and components which work together to control the metabolic

activity of the cell. The cell can obtain energy and raw materials from simple molecules

in its environment. When conditions are such that the cell is ready to replicate, some of

the cellular machinery duplicates the genetic material, the cell grows, and then it divides

in two. A mechanism exists to ensure that each half of the division contains a copy of

the genetic material. Thus the cell becomes two new cells. The general features of the

replication process in cells were described by Wilson in 1895 [73], several decades before

the detailed molecular structure of the material constituents involved was deduced. For

example, Wilson was able to write the following hypothesis about inheritance in cells:

. . . chromatin is . . . nuclein, which analysis shows . . . to be composed of a nu-

cleic acid, a complex organic acid rich in phosphorus. And thus we reach the

remarkable conclusion that inheritance may perhaps be affected by the physical

transmission of a particular chemical compound from parent to offspring

An up-to-date account of the process can be found in [2].

Some modern bacteria are thought to resemble the earliest forms of life that existed on

Earth [40]. They are able to take in simple, abundant molecules consisting of a few atoms

each as raw materials and then use these to maintain their own structure and to grow

and divide. When one considers individual atoms and the laws that govern their structure

and their interaction with other atoms, it is not at all obvious that these simple particles

can be joined together to make complex structures that are capable of manipulating and

marshalling the very things that they are made of.

How living things arose from non-living things is not known. There are several different

plausible hypotheses for the process, for example the RNA world hypothesis [3], and

Cairns-Smith’s hypothesis that organic life evolved from inorganic self-replicating clay

crystals [13].

What we can say with confidence is that the great complexity and diversity that we

see in the living world today arose through natural selection acting upon variations in

living organisms caused by variations in information encoded in genetic material.

As organisms became more complex, the range of synthetic pathways employed within

cells grew, as did the degree of co-operation between individual cells.

An interesting question that will be touched on in section 2.4.3 is the question of

whether artificial self-replicating systems can improve upon some of the capabilities of

natural self-replicating systems. The particular capabilities that this thesis is concerned

8

with are the programmability of a system and the range of structures that a system is

capable of constructing. Putting the question in the context of this thesis, we can ask

how much the evolutionary origins of living cells constrain the ease with which they can

be programmed, and the range of substances they can be programmed to make.

2.2 Von Neumann’s work

2.2.1 An abstract self-replication process

In the late 1940s, before the discovery of the structure of the genetic material and before

the processes by which information encoded in the genetic material gives rise to cellular

structure and function were understood, von Neumann [70] described an abstract self-

replication process that is remarkably similar to the process that was eventually found to

be taking place within cells. In outline, von Neumann’s process is as follows:

• There is a general constructing automaton A which can construct any automaton

X given a description ϕ(X) of X. Von Neumann proposed that for the sake of

simplicity, ϕ(X) should be a linear description, perhaps in binary form.

• There is a description-copying automaton B which can construct a copy of any

description ϕ(X).

• There is a control automaton C which first of all activates A, then activates B.

• A, B, C and ϕ(X) can be composed into a single automaton (A+B + C) + ϕ(X).

• The action of automaton A in (A+B+C)+ϕ(X) leads to (A+B+C)+ϕ(X)+X

• The action of automaton B in (A + B + C) + ϕ(X) + X leads to (A + B + C) +

ϕ(X) +X + ϕ(X)

• By setting X to A+B + C, we achieve self-replication.

This is a slight simplification of the process described in [70], in which automaton A

consumes the description ϕ(X) that it operates upon and so B is invoked twice in order

to make three copies of ϕ(X).

The parallels with self-replication in living cells are as follows:

• The description ϕ(X) recorded in a linear form is analogous to the genome, stored

in linear DNA.

9

• The description-copying automaton B is analogous to the collection of about a dozen

proteins that are involved in DNA replication.

• The general constructing automaton A is analogous to the ribosome and associated

machinery, which between them attempt to construct proteins according to any

description given to them.

• The controlling automaton C is analogous to the machinery that regulates the cell

cycle in a living cell.

Although von Neumann’s process was worked out before the precise details of cellular

reproduction were known, his writings indicate that his thoughts on the subject were

informed by what was known at the time about cellular reproduction, so it is perhaps not

very surprising that similarities exist between the two processes.

2.2.2 Von Neumann’s 5 questions

Von Neumann’s work on self-replication must be understood in the context in which it was

undertaken. In reference [70], it is clear that von Neumann was interested in answering

the 5 questions quoted below:

(A) Logical universality. When is a class of automata logically universal, i.e.,

able to perform all those logical operations that are at all performable

with finite (but arbitrarily extensive) means? Also, with what additional

— variable but in the essential respects standard — attachments is a

single automaton logically universal?

(B) Constructability. Can an automaton be constructed, i.e., assembled and

built from appropriately defined “raw materials,” by another automaton?

Or, starting from the other end and extending the question, what class

of automata can be constructed by one, suitably given, automaton? The

variable, but essentially standard attachments to the latter, in the sense

of the second question of (A) may here be permitted.

(C) Construction-universality. Making the second question of (B) more spe-

cific, can any one, suitably given, automaton be construction-universal,

i.e., be able to construct in the sense of question (B) (with suitable, but

essentially standard, attachments) every other automaton?

10

(D) Self-reproduction. Narrowing question (C), can any automaton construct

other automata that are exactly like it? Can it be made, in addition,

to perform further tasks, e.g., also construct certain other, prescribed

automata?

(E) Evolution. Combining questions (C) and (D), can the construction of

automata by automata progress from simpler types to increasingly com-

plicated types? Also, assuming some suitable definition of “efficiency,”

can this evolution go from less efficient to more efficient automata?

At the time that von Neumann undertook his work, the answers to both questions of

(A) were known. Turing machines are an abstract class of automaton that answer the

first part of this question, and the universal Turing machine answers the second part [66].

Von Neumann went on to answer questions B to E. Although his work was not finished

at the time of his death in 1957 the manuscripts that he left contained enough information

for Burks to complete that part of the work that was concerned with the design of a self-

replicating programmable constructing automaton.

2.2.3 A cellular automaton model of a self-replicating programmable

constructor

Questions B to E were answered by devising a cellular automaton (CA) with transition

rules designed to support component parts which allow the implementation of signalling

pathways and logical operations, as well as construction pathways and construction op-

erations. Figure 2.2 show how 29 CA states are used for five types of component part,

including an Unexcitable component which is conceptually similar to empty space. In the

context of von Neumann’s CA, construction operations are those which result in the Unex-

citable component being transformed into other components, or which turn a component

back into the Unexcitable component.

Transmission components T behave like directional OR gates with three inputs and one

output. A Transmission component may be quiescent or excited (excited states are those

having dots in Figure 2.2). When a Transmission component p has a neighbouring excited

Transmission component q, and the output of q lies against an input of p, p will be excited

one time unit later. p will also be excited one time unit later if an excited Confluent

component lies against an input of p. If neither of these conditions are met, p will be

quiescent one time unit later. 8 CA states are used for the Transmission component.

Confluent components C are directionless and may also be quiescent or excited. A

11

Figure 2.2. The 29 states of von Neumann’s cellular automaton.

Confluent component can be thought of as a delaying AND gate with between one and

three inputs. A Confluent component p will become excited two time units later if at

least one of its neighbours is an excited Transmission component with output pointing at

p, so long as none of its neighbours are quiescent Transmission components with output

pointing at p. Otherwise p will be quiescent two time units later. Because the neighbours

of a Confluent component determine whether or not it will be excited two time units later

it can be used to introduce a delay of two time units into the propagation of an excited

state along a pathway (whereas a Transmission component introduces a delay of one time

unit). 4 CA states are used for the Confluent component. In Figure 2.2 and elsewhere,

Cxy denotes a Confluent component where x = 1 means that the component is currently

excited and x = 0 means that it is not currently excited. Similarly y = 1 means that

the component will be excited in the next time unit and y = 0 means that it will not be

12

excited in the next time unit.

Special Transmission components T’ have similar behaviour to Transmission compo-

nents in that they can be used to propagate stimuli. The main purpose of a Special

Transmission component is to apply a stimulus to a Transmission or Confluent compo-

nent that is no longer needed in a particular location. This causes the component to

turn into an Unexcitable component. Special Transmission components may be excited

by other Special Transmission components or by an excited Confluent component. If a

Special Transmission component needs to be turned into Unexcitable component this can

be done by stimulating it with a Transmission component.

The Unexcitable component U does nothing unless stimulated by a Transmission or

Special Transmission component, in which case it turns into the Sensitised component Sθ.

Sensitised components are the means by which an Unexcitable component can be

turned into other components in order to effect construction operations. The Sensi-

tised component Sθ may be stimulated by a sequence of signals in order to transform

it into the quiescent form of the Transmission, Confluent or Special Transmission com-

ponents. The CA states used for the Sensitised component are denoted Sσ, where σ ∈
{θ, 0, 1, 00, 01, 10, 11, 000}. After one time unit, Sensitised state Sσ becomes Sσ1 or Sσ0

depending on whether or not it is stimulated. The states S0000, S0001, S001, S010, S011,

S100, S101, S110, S111 are the 9 quiescent states of the Transmission, Confluent and Special

Transmission components described above.

Von Neumann chose these components with the expectation that they would possess

logical universality in the sense of question A, which was indeed shown to be the case,

and also that they might permit the implementation of constructing automata, which

when fed appropriate signals might cause the creation of patterns in a previously empty

(Unexcitable) region of the CA space. Von Neumann considered only the construction of

quiescent patterns which would be entirely inactive until excited by an initiating stimulus.

Von Neumann devised several simple logical ‘organs’ for his computing and construct-

ing automata which were then combined to make more complex subsystems. Figures 2.3,

2.4 and 2.5 show three such organs. (The organ of Figure 2.4 is not von Neumann’s design,

but a later design of J.E. Gorman).

Figure 2.6 shows a schematic diagram of von Neumann’s self-replicating programmable

constructor, with the main subsystems labelled. With reference to the process outlined in

section 2.2.1 the Instruction Tape corresponds to ϕ(X), the Control Logic corresponds to

automaton C. Between them the Construction Logic, Arm Control and Construction Arm

correspond to automaton B and the Tape Copying Logic, Arm Control and Construction

13

Figure 2.3. A Pulser organ which outputs 111 at b when excited with 1 at a.

Figure 2.4. An organ which permits sequences of excitations input at a1 and a2 to cross over to
outputs b1 and b2 respectively.

Arm correspond to automaton A. The Construction Arm reaches out from the main body

of the machine into an empty region of space and creates a new pattern according to the

contents of the Instruction Tape. The Tape Copying logic contains logic for making a

copy of the Instruction Tape in the newly created machine.

Von Neumann did not fully specify a cell-by-cell description of a design for a self-

replicating programmable constructor. Only recently has this been completed.

In 1995, Nobili and Pesavento succeeded in implementing a version of von Neumann’s

automaton by augmenting von Neumann’s 29 states with 3 additional states for handling

signal crossing [49]. This implementation is shown in Figure 2.7. The total number of

cells in this implementation is a little over 150,000 (including the instruction tape, not

14

Figure 2.5. The Construction Arm. Appropriate sequences of signals at a and b can cause the
arm to grow, turn corners, retract, and transform Unexcitable components into other components.

Figure 2.6. A schematic diagram of von Neumann’s self-replicating automaton.

shown in Figure 2.7). Nobili improved this to 50,000 cells in 2007 [46] by using run-length

encoding for the instruction tape of the machine.

In 2008 Buckley succeeded in implementing and simulating a self-replicating system

in von Neumann’s environment using the original 29 state rule set [10]. Buckley’s imple-

mentation uses approximately 310,000 cells.

Von Neumann’s self-replicating automaton has sometimes been described as a universal

computer-constructor, capable of constructing any specified automaton within the CA

environment and also able to perform any specified computation within that environment.

However, in the original form that he devised it, it was not. Although von Neumann

devised a universal Turing machine in his 29-state CA and although it shares some organs

with his universal constructor, his design for a universal constructor did not incorporate

15

Figure 2.7. A representation of Nobili and Pesavento’s implementation of von Neumann’s self
replicating automaton.

a universal computer. The later works of Thatcher [65] and Codd [14], which have some

similarities to von Neumann’s design, did incorporate a universal computer as an integral

part of the universal constructing automaton for a very good reason that will be explained

in section 2.3.1.

In addition to the parallels mentioned in section 2.2.1 between von Neumann’s abstract

self-replication process and the self-replication process found in living cells, this particular

implementation also has in common with living cells that the self-replicating entity is

self-contained and topologically continuous.

There are also some significant differences:

• The operation of the machine is entirely deterministic and predictable.

• Information stored on the data tape directly encodes the structure of the machine:

there is a one-to-one mapping between a part of the constructed machine and a

single region on the tape.

• The machine is not designed to tolerate errors. All parts of the machine are critical

to its operation and it has no redundancy nor any ability to detect and correct errors.

16

In section 2.1.4 of reference [24] Freitas and Merkle point out some of the limitations

of von Neumann’s CA model from the perspective of physical realisation. These are

paraphrased below:

1. The system does not directly permit the movement of objects in space. In von

Neumann’s environment motion is a complex process of deleting cell states at one

location and recreating them at another.

2. The system is synchronous: All state transitions in cells occur simultaneously.

3. The system provides only a limited capacity to detect the states of cells, making

self-examination and self-repair difficult.

4. Related to 3, the region in which a new machine is to be created must be entirely

empty, otherwise construction cannot proceed.

5. The environment is essentially an information processing environment and does not

attempt to model manipulation and transformation of physical materials.

Von Neumann’s design is complex. Since von Neumann’s time several very simple

self-replicating systems have been devised (which will be discussed more fully in section

2.4). This has led to a debate about what it was that von Neumann was trying to achieve

in his work and why his design is so complex.

A letter that von Neumann wrote to Norbert Wiener in 1946 [69] indicates that he

had recently become interested in the problem of self-reproduction in relation to living

organisms. The letter hints that even at this early stage of his thinking about the subject

he was interested in automata that have a more general constructional capability than is

required simply to construct a duplicate automaton.

In reference [68] von Neumann makes it clear that he is aware that there are some

simple systems that exhibit a kind of self-reproductive behaviour, and he proposes a

definition of self-reproduction that seems to exclude these systems.

One of the difficulties in defining what one means by self-reproduction is that

certain organizations, such as growing crystals, are self-reproductive by any

naive definition of self-reproduction, yet nobody is willing to award them the

distinction of being self-reproductive. A way around this difficulty is to say

that self-reproduction includes the ability to undergo inheritable mutations as

well as the ability to make another organism like the original.

17

McMullin [41] argues that the problem that von Neumann solved by devising the ma-

chine described in section 2.2.3 was primarily the problem of how machines can construct

other machines, and in particular how machines can give rise to machines more complex

than themselves, which was an unsolved problem in nature at the time. McMullin points

out that von Neumann’s cellular automaton pattern that can be programmed to construct

any other pattern, including a duplicate pattern, is a solution to that problem. The sim-

pler self-replicating systems of Langton [37] and Byl [12] do not solve the same problem

because these systems cannot construct other systems.

McMullin’s interpretation of von Neumann’s work is consistent with von Neumann’s

stated intention of answering questions A to E given on page 9.

Burks appears to misinterpret von Neumann’s work since he omits discussing how it

relates to question E altogether from his summary in reference [70]. He also alters the

‘further tasks’ that an automata might carry out in question D from ‘...also construct

certain other, prescribed automata.’ to ‘...can perform the computations of a universal

Turing machine...’. Not only does Burks’ question D remove the link between questions

C and D, but Von Neumann’s design does not answer Burks’ question D. Burks briefly

discusses how von Neumann’s design can be modified so as to answer his version of ques-

tion D, but the question has since been answered by automata much simpler than von

Neumann’s [27].

This discrepancy between the von Neumann’s question D and Burks’ question D high-

lights the fact that the capacity for self-replication is one design requirement or design

constraint among many others that a system may have. If the design requirements change,

then the range of possible solutions is also likely to change.

2.3 Works directly related to von Neumann’s work

Following the completion and publication of von Neumann’s work in the 1960s, further

research into self-replicating systems embedded in cellular automata led to several other

schemas for self-replicating systems.

2.3.1 Thatcher and Codd

Thatcher developed an alternative strategy for self-reproduction in von Neumann’s CA

environment [65]. Thatcher’s development was based upon a self-describing property of

Turing machines first proved by Lee [38]. Lee showed that given a universal Turing ma-

chine U which accepts descriptions D(Tn) of Turing machines Tn it is possible to find a

18

Turing machine TS with the property that when U operates on D(TS) it outputs a dupli-

cate description D(TS). We have seen that von Neumann’s self-reproducing automaton

contained a subsystem dedicated to copying the instruction tape from a parent automa-

ton to its child, and that the controlling subsystem in von Neumann’s automaton was

not a universal computer. Thatcher realised that if a universal computer is used for the

control unit of the automaton then the self-describing property proved by Lee makes the

instruction-tape-copying subsystem superfluous.

From a theoretical point of view Thatcher’s development is very elegant. It reduces

the amount of technical detail that is needed to prove that a particular environment

supports self-replicating programmable constructing machines. If it can be shown that

a constructing system controlled by a universal computer can be made in a particular

environment then it follows automatically that the system will be capable of self-replication

in that environment.

However, this elegance comes at a cost: the number of elementary parts needed to

implement a universal computing automaton is likely to be larger than the number needed

to implement a simple translating automaton and a tape-copying automaton. If the length

of time that the machine takes to operate is also a consideration then it must be borne

in mind that those models of computation that require the least hardware to implement

(such as the Turing machine) also turn out to be the slowest. So in order to build a time-

efficient universal computing machine the number of elementary parts required is likely to

be greater still.

Using Thatcher’s approach Codd was able to show in [14] that von Neumann’s result

could be recapitulated in a simpler 8-state cellular automaton, at the expense of a much

larger number of cells — estimated at 100,000,000 [34]. Devore greatly simplified Codd’s

design, resulting in an implementation using only 94,794 cells [15].

2.3.2 Laing’s kinematic automaton system

In the late 1970s, Laing described a range of plausible architectures for self-replicating sys-

tems made from abstract modular parts capable of interacting logically and kinematically

with other parts [36].

Laing first of all discussed the architecture used by von Neumann, in which a descrip-

tion of a self-replicating automaton is first interpreted by a constructor which builds a

replica of the automaton, and then duplicated and a copy of the description given to the

replica. He then described a number of other architectures in which a machine does not

need to contain any kind of description of itself. For example, he showed that it is possible

19

for a machine to examine itself and construct a replica using information obtained during

this examination.

2.4 Simple self-replicating systems

If no other requirement is given for the design of a self-replicating system except that it

be able to make another system like itself then designing such a system is trivially easy

in a cellular automaton environment and not very difficult in a physical environment.

In a cellular automaton environment consider a two state system with states p and

q, and a rule by which state p transitions to state q whenever any of its neighbours are

in state q. In a system containing no q states, no q states will ever appear. However,

if the system is seeded with an initial q state then this state ‘self-replicates’ and spreads

throughout the entire universe as quickly as possible.

As a physical analogue of this system imagine a large number of cotton wool balls

soaked in a flammable liquid. A flame-proof sack of such balls will remain passive unless

seeded by a flaming ball, in which case the flaming ball will ‘self-replicate’ by propagating

its state throughout the sack until all balls are aflame. This example is slightly more

complex than the cellular automaton example because an external raw material (oxygen)

is also required in order for the state transition to take place, and because the replicating

entities have a finite lifetime.

In both of the above cases no information is transferred from parent to child. In the

case of the cellular automaton environment the situation becomes no more difficult to

arrange however large the number of bits to be transferred: one simply defines a state

space large enough to accommodate the number of bits required. In the physical world

however this additional requirement does introduce some more complexity.

This requirement was first addressed by Lionel and Roger Penrose, who were among

the first to construct physical self-replicating devices. The simplest of their devices [48]

consisted of two plywood parts A and B (Figure 2.8).

A collection of these parts can be placed along a line in a random arrangement (Figure

2.9). If the collection is then agitated in one dimension, allowing the parts to jostle

against one another, the parts will not interlock with one another unless seeded by an

initial configuration (Figure 2.10).

This configuration will cause other pairs of parts to adopt the same configuration. Note

that there are two possible configurations for the interlocked pair A and B: that shown in

Figure 2.10 and its mirror image. Thus a configuration of parts transfers a single bit of

20

BA

Figure 2.8. The two parts of Penrose’s simple self-replicating system.

Figure 2.9. A random arrangement of Penrose’s parts.

information to its progeny unlike the flaming ball system described above.

2.4.1 Template based systems

Lionel Penrose’s speculations about simple self-replicating systems in biology led him to

propose a template-based model for replicating a linear structure composed of a number

of template subunits [47]. Penrose proposed an environment containing a large supply of

individual subunits moving about in a random fashion in the same manner as molecules

in a gas. A linear template structure in this environment would induce individual units

to form a replica structure parallel to and in direct contact with itself, one unit at a time.

The replica structure would then separate from the template when it was complete. Figure

2.11 depicts Penrose’s concept.

A more recent physical implementation was undertaken by Griffith who devised a

system for exploring physical templating processes. Griffith was concerned with build-

ing reliable working templating systems, rather than simulating such systems. Griffith

[26] built a set of programmable units for investigating self-assembly and used them to

implement a template-based replication scheme similar to that described by Penrose.

Smith et al [58] and Hutton [28] have developed simulation models of template-based

replication in two dimensional spaces.

Figure 2.10. Parts replicating a configuration.

21

Figure 2.11. Penrose’s conception of a template-based self-replicating system.

A systematic analysis of the logic involved in template-based replication and of the

energy considerations involved in physical template-based replicating systems has not yet

been carried out.

Using LEGO R⃝ modules, Chirikjian’s research group built a number of simple self-

replicating robots [39]. In all of these systems a robot is able to bring together a small

number of separate modules and assemble them into a replica of itself. Information that

controls the robot’s movements exists in the form of a path drawn on the ground, which

a path-following mechanism in the robot tracks. The robot does not produce a duplicate

path, so this part of the system is not replicated.

2.4.2 Langton’s self-replicating loops

Taking as his starting point the 8-state cellular automaton devised by Codd and driven

towards simplicity, in part by the meagre power of home computers at the time, Langton

[37] devised a simple self replicating loop structure embedded in Codd’s cellular automa-

ton. The loop structure contains a ‘genotype’ in the form of a sequence of instructions

continuously circulating within the loop, a ‘construction process’ in the form of a sequence

of state transitions that take place at a growing tip of the replicating loop structure and a

‘phenotype’ in the form of the protective sheath of the loop. Figure 2.12 shows Langton’s

system after a single replication cycle.

Langton’s loop cannot be programmed to build anything other than a replica of itself

so it does not have any constructional capability in the sense that the automata of von

Neumann and Codd do.

22

Figure 2.12. Langton’s self-replicating loop after a single replication cycle.

Byl [12] was able to design a smaller self-replicating loop than Langton, and Reggia

[52] a still smaller one at only five cells but one which still retains the essential features

of Langton’s loop: circulating instructions controlling a growing tip.

2.4.3 Summary

None of these simple models of self-replication contain anything like a programmable

constructor and cannot construct anything except copies of themselves.

Nevertheless it is still worth considering whether such systems can inform the study

of self-replicating programmable constructing systems. The most obvious consideration

is that life as we know it today arose from a much simpler self-replicating system and

probably from a system so simple that it occurs spontaneously in the right conditions.

There are several different hypotheses about the origin of life, but in each one there

is a continuous evolutionary path from very simple self-replicating systems with little

constructional capability to the diverse range of living systems that we see today with a

much wider constructional capability.

So perhaps one way to make artificial self-replicating programmable constructing sys-

tems is to mimic the path taken by evolution: begin by investigating simple physical

self-replicating systems and then gradually develop and modify them so as to extend their

programmability and their constructional capabilities. This approach has been taken by

Smith et al. where a simple template-based replicating system [58] is later augmented by

a templating-folding system so that arbitrary shapes can be constructed [67].

There are however a number of reasons for following a different approach to that found

in nature.

Although nature begins with simple systems that over time become more complex,

nature does not do this for any reason of efficiency or because it is a good process to

23

follow to end up with the desired outcome. Nature does this because it has no other

alternative.

For example consider the ribosome. A ribosome is a simple kind of programmable

constructor which makes proteins from amino acids. Its construction activity is limited to

peptide bond formation between amino acids. Ribosomes construct long chains of amino

acids where the sequence of amino acids is specified by a description encoded on RNA. As

they are constructed, the amino acid chains fold into a configuration determined by the

amino acid sequence. This happens because electrons in molecular subgroups in different

parts of the chain interact to cause the chain to fold in a particular way. Often further

steps, such as cross linking between different parts of the chain, take place after initial

folding but before the protein ends up in its final configuration. Once it has formed the

protein then carries out its specific role within the cell.

The amino acid sequence is effectively being used for two different purposes. It is being

used for geometrical purposes to give the protein its shape, and it is also being used to

give the protein its function by having particular molecular groups in the active sites of

the protein. These two purposes are not entirely unrelated, because the action of a protein

often depends on its ability to twist and distort as it binds substrate molecules and then

returns back to its original conformation once it has completed its operation on substrate

molecules. However for at least some proteins much of the structure of the protein exists

solely to make sure that the right molecular groups end up in the right places in relation

to other molecular groups.

Why have more efficient protein-like molecules not evolved? And why has nothing more

elaborate than the ribosome evolved for the construction of proteins? Why do we not see

mechanisms in living cells that actively direct and control the folding of macromolecules,

thus relieving the macromolecule from the dual role of folding and function? Rather

than relying on waiting for random motions and trial and error for the correct amino-

acid bearing transfer-RNA to arrive at the correct site in a ribosome, why is there no

mechanism for fetching the correct transfer-RNA on demand, perhaps from a buffered

store? Would these systems not be more capable or more efficient than the ribosomes

that we do see?

One reason may be that such systems could only be expected to occur in living things

if there is an evolutionary path towards them. It may be possible to add these features to

ribosomes artificially by deliberately redesigning ribosomes to incorporate new features,

but unless there is a gradual step-by-step process by which these things can be achieved,

we cannot expect that they would occur naturally.

24

Drexler gives a similar argument when discussing the differences in evolutionary ca-

pacity between evolved and designed machines [18].

So although we may draw inspiration from nature we should not assume that nature

does things in the best possible way, or that nature represents any ultimate limit to the

kinds of self-replicating constructing machine we may create, even if we limit ourselves to

organic elements.

2.5 Physical self-replicating constructors

2.5.1 Systems derived from living systems

Advances in the field of synthetic biology have led to the ability to create some of the

components of living cells from scratch. In [29] Jewett and Church describe how they

succeeded in making a functioning ribosome in vitro. This research is likely to make it

possible to make a synthetic cell containing a metabolism designed for a specific purpose

and a genetic code containing only information that is essential for the cell to function.

In [17] Drexler proposed that one of the possible avenues towards being able to ma-

nipulate matter precisely at a molecular level is to begin with manipulation and assembly

tools derived from biological systems and engineer them so as to increase their function-

ality and increase the range of materials that they are able to work with. One example of

this approach is DNA origami [54], in which a strand of DNA containing 7,176 bases can

be programmed to fold-up into any one of a large number of possible configurations.

The two approaches are different. The former approach results in an architecture

directly derived from the architecture of a cell. The latter approach seeks to make entirely

new kinds of machines from molecular biological components.

At the end of section 2.4.3 it was pointed out that one of the primary constraints

that affects the architecture of living things is that they must be capable of evolution.

Evolutionary capacity requires the ability to change and the ability to continue working

despite the change and produce offspring that inherit the change. For many applications

of self-replicating systems, these abilities are highly undesirable. We usually do not wish

designed machines to change by themselves; this is normally counted as a malfunction. If

a machine does change or malfunction then we would like the machine to be able to fix or

work around the problem rather than pass the malfunction on to other machines.

25

2.5.2 Von Neumann’s kinematic model

Before developing his 29-state cellular space for exploring self-replication and construction

von Neumann envisaged a physical system in which he thought it might be possible to

construct a self-replicating machine, quoted below from [71]:

The constructing automaton floats on a surface, surrounded by an unlimited

supply of parts. The constructing automaton contains in its memory a de-

scription of the automaton to be constructed. Operating under the direction

of this description, it picks up the parts it needs and assembles them into the

desired automaton.

Burks refers to this system as the kinematic model. Von Neumann went some way

towards considering the types of part the kinematic model should support. In [71], Burks

attempted to reconstruct the most detailed description of these parts that von Neumann’s

gave, quoted below:

Von Neumann described eight kinds of parts. All seem to have been symbolized

with straight lines; inputs and outputs were indicated at the ends and/or the

middle. The temporal reference frame was discrete, each element taking a unit

of time to respond. It is not clear whether he intended this list to be complete;

I suspect that he had not yet made up his mind on this point.

Four of the parts perform logical and information processing operations. A

stimulus organ receives and transmits stimuli; it receives them disjunctively,

that is, it realizes the truth-function “p or q.” A coincidence organ realizes the

truth function “p and not-q.” A stimuli producer serves as a source of stimuli.

The fifth part is a rigid member, from which a rigid frame for an automaton

can be constructed. A rigid member does not carry any stimuli; that is, it is

an insulated girder. A rigid member may be connected to other rigid members

as well as to parts which are not rigid members. These connections are made

by a fusing organ which, when stimulated, welds or solders two parts together.

Presumably the fusing organ is used in the following way. Suppose a point

a of one girder is to be joined to point b of another girder. The active or

output end of the fusing organ is placed in contact with points a and b. A

stimulus into the input end of the fusing organ at time t causes points a and

b to be welded together at time t + 1. The fusing organ can be withdrawn

26

later. Connections may be broken by a cutting organ which, when stimulated,

unsolders a connection.

The eighth part is a muscle, used to produce motion. A muscle is normally

rigid. It may be connected to other parts. If stimulated at time t it will

contract to length zero by time t + 1, keeping all its connections. It will

remain contracted as long as it is stimulated.

Kemeny’s 1955 article [31] is often cited as containing a description of von Neumann’s

kinematic model but in fact this article does not describe this model. The article contains

two sentences that mention a hypothetical machine capable of making such things as

rolls of tape, pencils, erasers, vacuum tubes, motors and so on from raw materials and

then constructing a duplicate of itself from these. The article then goes on to describe

von Neumann’s cellular automaton model of a self-replicating programmable constructor

without mentioning the kinematic model at all.

The architecture that von Neumann envisaged for his kinematic self-replicating ma-

chine was somewhat similar to that which he later used for his cellular automaton based

self-replicating automaton: i.e. a control unit governing the actions of a constructing unit,

capable of producing any automaton according to a description provided to it on a linear

tape-like memory structure.

Von Neumann expected that the total number of parts required to construct a self-

replicating automaton in the kinematic model would run into the millions.

Von Neumann postponed further work on this model after deciding that the cellular

automaton model would be easier to reason about and would be sufficient for answer-

ing questions A to E of section 2.2. He intended to deal with the logical aspects of

self-replication and construction first and then progress to the kinematical, mechanical,

chemical and physical aspects.

The quotations below (from [11]) shows that Burks was of the opinion that pursuing

a kinematic model is unnecessary:

It is a difficult problem to develop a complete, precise set of rules for the

kinematic system which is at the same time simple and enlightening. Moreover,

it is doubtful that anything of much value is contributed by the kinematic

or motional capabilities of the system. On the one hand, these kinematic

features of the model are too remote from chemistry, physics and mechanics

to be of much interest in their own right; while on the other hand, they are

27

too remote from problems of organization, control, and logic to contribute to

our understanding of these problems.

As far as studies of logic and automata theory are concerned, the cellular

system is superior to the kinematic system just because it does not include

motion as a basic operation. Motion is not a proper object of study for logic,

and as we noted in discussing von Neumann’s passage from the kinematic to

the cellular system, the motional aspects of the kinematic system complicate

it from the point of view of logical analysis.

Burks dismisses systems which model motion as being unnecessary for the logical study

of automaton and yet there are at least two subsystems of von Neumann’s automaton

that could be expressed more naturally in a system that supports motion. The first of

these is the instruction tape. To access a particular location on the tape a path must be

extended to that location so that it can be read and then the signal from that location

must be fed back to the main body of the constructor. This is very time consuming and

accounts for most of the execution time of the machine. If the system supported motion

the instruction tape could be moved relative to the constructor body and its contents

accessed more quickly.

The second and most obvious subsystem that would benefit from a model of motion is

the construction arm. In a similar way to the tape reading mechanism, the construction

arm moves by laboriously erasing itself from one location and recreating itself in another.

The mechanisms which implement these movements, by erasing and recreation, are the

only subsystems in the constructor for which the erasing process is required and for which

the 8 ‘Special Transmission’ states described in section 2.2 are needed. So we see that

despite trying to remove motion from the model, it returns again by the back door in an

ill-fitting way.

In stating that any kinematic model would be too remote from chemistry, physics and

mechanics to be of much interest in its own right, Burks overlooks the fact that science

contains many models that are remote from fundamental physical laws and that it is

precisely for this reason that they give insight. A very good example of how kinematic

interactions result in very similar behaviour in systems where the physical, mechanical

and chemical laws are very different in each case is that of template-based replicating

systems, some of which were described in section 2.4.1.

The systems of Penrose, Griffith, Hutton and Smith et al. all have different funda-

mental laws of motion and interaction — the first two being physical systems in different

28

media and the latter two being continuous space and discrete space computer simulations

respectively. What these systems have in common is that they implement concepts of

motion, proximity and connectedness at a higher level of abstraction and as a result very

similar behaviour can be observed in all of these systems.

It is true that the design of a kinematic model will require arbitrary choices about

which concepts to model and how precisely to model them but equally arbitrary choices

have to be made for logical models: Which logical primitives should be used? Which

model of computation should be implemented?

Furthermore, a kinematic model can answer questions that a logical model cannot

answer. Von Neumann (and others) have shown that programmable constructor based

self-replication is possible in an abstract logical environment. This tells us that there is no

inherent impossibility in the control, communication and information processing aspects

of the design of an artificial physical self-replicating programmable constructor but it does

not tell us whether there are any other possible barriers to building such a machine.

For example, we might find that when it comes to designing parts for such a machine

there is some minimum complexity that parts must have in order for the system to be

closed with respect to the identification and classification of parts.

This question cannot be answered using a cellular automaton framework that only

models logic and topology, but can be answered using some kind of kinematic model.

2.5.3 Moses’ programmable constructor

Matt Moses developed a physical constructing system designed to be capable of construct-

ing a replica of itself under the control of a human operator [44]. The system is based

around a set of 11 different types of tailor-made plastic blocks which can be used to build

a controllable manipulator that can pick up other blocks one at a time, position them in

three dimensions and then snap-fit them into a structure being built.

Moses’ ultimate ambition with respect to self-replicating systems is to create a machine

that can make its own component parts from raw materials and then assemble those

components into a replica. His Masters thesis describes his work towards the assembly

part of this goal and then goes on to speculate about possible methods for enabling a

machine to make its own component parts from raw materials.

Figure 2.13 is a graphical representation of Moses’ system with the main subsystems

labelled and Figure 2.14 is a photograph of the actual system showing the machine and

the replica that it has constructed.

Moses’ system is based around a basic polyurethane part shown in Figure 2.15. This

29

Figure 2.13. Graphical representation of Moses’ constructor.

Figure 2.14. A photo of Moses’ constructor.

figure shows an exploded view from two different angles. The two separate objects shown

in each view are glued together to make a basic part.

The basic part has a snap-tang arrangement for joining parts together and a protrusion

which serves both as a handle for picking the part up and as a target for the snap-tangs.

The basic part itself is not used in the constructor. The list below describes other parts

derived from the basic part and shows how frequently each part is used in the constructor.

30

Figure 2.15. A basic part in Moses’ system.

Rack: A part roughly the size of two basic parts that has a row of teeth that mesh with

the small gear and which can slide back and forth along one axis. Used 8 times.

Motor 1: A part containing a DC motor and a small gear that can be used to drive the

rack or the large gear. Used 1 time.

Anchor: A part made from a basic part connected to a tab. It is used to strengthen

beams and platforms made from other parts. Used 7 times.

Rail: Performs a similar function to an anchor. Used 13 times.

Cap: Connected to an anchor or used to terminate a chain of rails. Used 8 times.

Rotary cap: Identical to a cap except that the handle is replaced with a rotary handle.

Serves as a seat for gears. Used 1 time.

Cross-member: Spans two walls that are spaced one unit apart. Used 3 times.

Cap with support: Similar to a rail, but with the purpose of supporting a sliding beam

that travels over the cap. Used 1 time.

Cross-member with support: Similar to a cross-member but with the purpose of

supporting a sliding beam that travels over the cross-member. Used 1 time.

Motor 2: The same as motor 1 but with an additional extra basic part. The tangs on

the extra basic part help to hold the motor on the operating plane. Used 1 time.

31

Motor 3: The largest and most complicated part in the set. Provides linear motion in

the z direction. Used for retrieving and assembling parts. Used 1 time.

The constructing machine is supplied with parts by the operator. Each part is placed

in a storage site. The machine moves its arm so as to pick up parts from this site, move

them into the construction area and place them at the correct location, snapping a part

onto the handle of another part as necessary.

Moses describes several limitations of his work:

1. The physical implementation of his design did not work as well as expected.

2. The system required external control so was not fully self-replicating. In practice the

subsystem for generating control signals for a self-replicating constructor is likely to

be the largest (if not the most complex) part.

3. Moses’ system contains no feedback so, in the absence of a human operator, the

system would not know if it had made a mistake during construction.

4. The set of parts contains considerable redundancy and the choice of parts is some-

what arbitrary.

2.5.4 Self-replicating modular robots

Considerable work has been carried out on modular robotic systems in which several iden-

tical modules (each containing a microcontroller and communications channels and each

capable of a small range of movements) are connected together to make a single larger

robot capable of a wider range of movements, including locomotion and often manipu-

lation, especially of other robot modules. Freitas and Merkle give an overview of many

such systems in section 3.8 of [24]. Such robots are often designed to be autonomously

reconfigurable in which case the robot is capable of disconnecting and reconnecting its

modules in different locations.

Although not all such systems are designed as self-replicating systems there is a sense

in which many of them are. For example, in an environment of individual disconnected

modules, a small robot may be capable of moving around in the environment and picking

up disconnected modules until it has enough to build a replica of itself. The program

within the original robot is then transferred to the replica.

Zykov, Mytilinaios, Adams and Lipson [74] make this explicit by building a modular

robotic system in which a configuration of four modules can construct a replica configura-

32

tion when provided with a supply of additional modules in a location known to the robot.

Figure 2.16 shows this system after a replica has been constructed.

Figure 2.16. The self-replicating modular robot of Zykov et al.

A notable feature of the system of Zykov et al. is that a single module has only

one degree of freedom: it may swivel about a diagonal axis of the cube. Collections of

connected modules are capable of exhibiting complex motion as a result of the collective

motion of several individual modules.

An obvious limitation of this system is that the modular parts are highly complex,

considerably more complex than the parts used by Moses.

2.5.5 The RepRap project

Bowyer et al. [9] have developed a rapid prototyping system based around a 3D printer

that is capable of being programmed to manufacture arbitrary 3D objects. Bowyer hopes

to enable the system to make as many as possible of its own parts by a two-pronged

approach of extending the range of materials that the system can work with (to include,

for example, conductive materials that can be used for making circuit boards) so that it

can manufacture a wider range of parts and also by reducing the complexity of the parts

that the system is built from.

The first version of the system (called Darwin) is shown in Figure 2.17. Darwin consists

of a pair of nozzles D that can be precisely positioned in two dimensions (left, right, back

and forth) by the motors labelled E, and a platform A that can move up and down on

screw threads B under the control of motor C.

One of the nozzles is fed with a thermoplastic with a melting temperature between

33

Figure 2.17. RepRap 3D self-replicating printer.

100 and 200 degrees celsius and contains a heater which melts the plastic so that it can

be extruded from the nozzle in a 0.5mm diameter stream.

The nozzle and platform move as the plastic is extruded so as to cause the plastic

stream to be laid down in any desired shape. For shapes that cannot be made without

overhanging portions a second nozzle is used to extrude a supporting medium (for ex-

ample, icing sugar, which offers good support but which can be dissolved away in water

afterwards).

As of 2009, the system is capable of being programmed to build all of its own plastic

parts. There are no plans to add assembling capabilities to the system, so although it

may ultimately be capable of making most if not all of its own parts, it will not be able

to assemble those parts together.

2.6 Proposed and conceptual self-replicating machines with

a large constructional capability

2.6.1 NASA study

Self-replicating systems offer enormous promise for the exploration of space. Indeed with-

out exploiting an artificial self-replicating system of some form (for example, a growing,

34

self-sufficient, space-based colony with human beings as an essential component) the long

term exploration of the galaxy is not possible.

Several people have written about this prospect. The most detailed study of self-

replicating systems for space exploration was a 1980 NASA Summer Study [22] investi-

gating the possibility of constructing a self-replicating factory on the moon. Such a factory

would obtain raw materials from the lunar soil by a variety of chemical processes, then

process these materials to make simple parts. The simple parts would then be assembled

into subsystems and then the subsystems would be assembled into replica factories.

The study report also includes an outline proposal for a feasibility demonstration

system consisting of a robot built from off-the-shelf electronic and mechanical components

able to build a replica of itself by picking components from a stockroom and assembling

them according to a specified plan [23].

At around the same time as this study was completed, Freitas also proposed a self-

replicating interstellar probe [21]. The probe, propelled by a nuclear fusion rocket engine,

could be launched towards another star and upon arriving would intelligently assess the

environment around the star. Then after transmitting large amounts of scientifically inter-

esting information about the star system back to Earth, it would seek out planetary bodies

from which raw materials could be obtained, so that replica probes could be constructed

and launched to further stars.

2.6.2 Drexler’s assembler

In Engines of Creation [17], K. Eric Drexler describes what he calls an ‘Assembler’. This

hypothetical machine is capable of operating at the atomic scale, effectively building ob-

jects in which every atom is in a specified position.

As originally proposed by Drexler an assembler consists of a programmable computer

and a moveable constructing ‘head’ with a set of interchangeable reaction tips. Between

them the tips are capable of performing all of the chemical reactions needed to enable the

assembler to construct whatever it is required to construct.

Drexler hypothesises that as a result of this level of construction precision the proper-

ties and behaviours of manufactured objects will be greatly extended. In his earlier works

on the subject Drexler proposes that in order to make macroscale objects in a short time

such assemblers could be given the capacity for self-replication, so that in order to make a

large object an assembler would first of all generate many more assemblers, which would

then cooperate to make the object. Drexler points out that it is not unreasonable to ex-

pect that man-made self-replicating molecular manufacturing systems might have greater

35

capabilities in this role than living things.

There may be some serious risks involving nanoscale self-replicating assemblers [8].

Assemblers capable of operating in an outdoors environment and capable of using natural

resources as raw materials could malfunction and spread like highly efficient bacteria,

consuming all available natural resources on the planet — the so-called ‘grey goo’ scenario.

As a way of mitigating some of these risks, later proposals for molecular manufacturing

systems have some element that would otherwise be required for a system to be able to

self-replicate in a fully autonomous way provided by an external agent [51]. For example

the instructions required for an assembler to be able to construct a replica of itself could

be broadcast to every assembler from an external source, which could have a limited range

and which could be shut off in the event of a significant malfunction.

There has been some debate about whether molecular manufacturing systems of the

kind envisioned by Drexler are possible. Drexler’s ideas in ‘Engines of Creation’ [17] and

in his later work ‘Nanosystems’ [19] are in the form of theoretical applied science and

therefore allow for a broad range of possible implementations of the concepts described.

Most criticism of Drexler’s proposal has focused on the part of the system which

transfers atoms or small molecules one-by-one from one location (a storage location) to

the structure being assembled.

Smalley [56, 57] argued that molecular assemblers are simply impossible because of

incorrect assumptions about the nature of chemistry implicit in the idea of a molecular

assembler and that only liquid-phase systems involving large numbers of highly specific

enzymes (i.e. systems very much like living organisms) are capable of the synthetic diver-

sity and construction closure that are necessary for molecular-level assembly. Smalley’s

arguments are not quantitative and do not discuss any particulars of the research that

has already been done on the type of systems that he is arguing are impossible. Merkle

[42] has carried out in-depth studies on a set of reaction mechanisms that could be used

in a first-generation molecular manufacturing system. This research has not yet come

up against any insurmountable barriers and unless it does it is premature to say that its

aims are impossible or that the potential benefits and dangers that it poses can be safely

ignored.

2.7 Simulating self-replicating machines

This review shows that while considerable work has been done on simulating cellular au-

tomaton based models of self-replication programmable constructing systems and some

36

work has been done on building simple physical self-replicating machines of various kinds,

very little work has been undertaken to model or simulate physical self-replicating pro-

grammable constructing machines made from simple component parts.

The self-replicating systems of von Neumann, Langton, Penrose, Moses, Griffith, Zykov

et al. and Bowyer all involve a trade off between a number of different factors including

part simplicity, constructional capability and physical realism.

This can be represented by the diagram in Figure 2.18 in which several of these self-

replicating systems are positioned relative to other systems in such a way as to show how

they differ from each other in the simplicity of their parts, the range of things that they

can construct, and how physically realistic they are.

Figure 2.18. Map of some existing work on self-replicating systems.

The region labelled G in Figure 2.18 represents the class of fully autonomous physical

self-replicating systems whose members can take in very simple parts or raw materials and

from them can construct a wide range of other machines in addition to a replica machine.

Such a system has not yet been demonstrated.

There are several different ways to progress from existing systems towards G. Engineer-

ing living cells so as to increase the range of things that they can make is one approach.

Another is to begin with a physical system such as the Darwin system used in the RepRap

37

project, and then work out how to increase the range of things that the system can make.

This will have a knock-on effect of reducing the complexity of the set of parts that must

be supplied to the system, because it will be able to make more of its own parts from

scratch.

The approach towards G that is taken in this thesis is to investigate the largely un-

explored middle ground between simulations of cellular-automaton-based self-replicating

programmable constructing systems made from simple but highly abstract parts and the

various physical self-replicating systems that have been constructed.

It is conceivable that region G is not reachable. It could be that machines in this

region are impossible to design and are not possible even in principle. Or it could be

that machines in this region are possible in principle, but not constructible using any

technology base outside of G. If G is not reachable then the attempt to reach it will reveal

what the boundary of this region is and why it cannot be reached.

Whether modelling or building physical automata, it is necessary to choose an ap-

propriate level of abstraction. What is considered appropriate will depend upon which

features of an automaton are of interest and which questions are being asked. For example,

if one is concerned with the inputs and outputs of an information processing automaton

but not at all concerned with the medium on which the information is written or the

speed with which it is processed, the automaton can be modelled at a purely logical level

of abstraction. A second example is that of building a digital electronic computing ma-

chine. The machine can be built from standard digital circuit elements that are designed

so as to behave in such a way that as far as possible a computer designer need not be

concerned with what goes on inside the elements but only with the topology and timing

of the interconnected parts.

The cellular automata systems that have been used for investigating self-replicating

programmable constructors explicitly model logic, time and topology. This research ex-

plores self-replicating programmable constructors in simulation environments that in ad-

dition model geometry, motion, forces and mechanics. Individual parts in these environ-

ments have the ability to move around and a facility is provided by which parts may be

connected to one another. Simulation environments of this type are termed ‘kinematic

environments’ because they model movement and connectivity, but do not attempt to

model any detailed physical basis for movement or connectivity. Systems embedded in

such kinematic environments are named ‘kinematic automata’. (A term first used by

Burks in [11]). Von Neumann’s idea for a kinematic model of a self-replicating system,

described in section 2.5.2, inspired much of the work in this thesis.

38

Chapter 3

Exploratory Work

Chapter 2 shows that existing research into self-replicating programmable constructing

systems has focused either on highly abstract simulations, or on physical systems limited

by having a high component part complexity or a small constructional capability.

Two pieces of exploratory work were undertaken in the relatively unexplored territory

between abstract systems and physical systems in order to evaluate where further research

efforts could best be concentrated.

Sections 3.1 and 3.2 summarise these two pieces of work, which have been published

in [61] and [60] respectively. Section 3.3 evaluates both and then outlines the direction

that the rest of this thesis will follow.

3.1 A 2D discrete space kinematic environment

3.1.1 Introduction

CBlocks is the name of an environment in which square tile-like parts move and interact

with one another in a two-dimensional discrete space.

There are several different types of part. Each type performs a specific function. Some

types of part perform arithmetical and logical functions, others move in response to a

signal or move other parts, and others connect or disconnect other parts. Parts can send

and receive integer valued signals to and from neighbouring parts.

Parts can move one unit in any of four directions in a single unit of time. When a part

moves into a neighbouring cell that is already occupied, the occupying part gets pushed

away. A set of rules determine how signals pass between parts, how parts can be connected

together and how they should behave when they are connected. Parts can be in any one

of four possible orientations.

40

3.1.2 Detailed description of CBlocks

We define four direction vectors

NORTH = (0, 1)

EAST = (1, 0)

SOUTH = (0,−1)

WEST = (−1, 0)

Let D denote the set of these vectors

D = {NORTH,EAST, SOUTH,WEST}

We define the function

opposite((x, y)) = (−x,−y)

Let L be the set {True, False}, and let T denote the set of part types

T = { Wire, Cross,Delta,Not, And,Or,Nand,Nor, Insulator,

Push, Thrust,RFuse, LFuse,RUnFuse, LUnFuse,RSlide, LSlide,

Equal, Pulse, Creator,Multiplier, Adder, Store, Toggle}

A part P is completely described by the tuple

(P.location, P.orientation, P.type, P.output, P.connect)

where
P.location ∈ Z× Z

P.orientation ∈ D

P.type ∈ T

P.output ∈ Z× Z× Z× Z
P.connect ∈ L× L× L× L

P.location is a tuple (x, y) which specifies the location of the part in space. P.orientation

is the orientation of P .

The notation X[Y] is used to refer to the Y th element of the tuple X. It is convenient

to use the direction vectors D to index the P.output and P.connect tuples, so we define

that the vectors NORTH,EAST, SOUTH and WEST can be used to index the 1st, 2nd,

3rd and 4th elements of a tuple respectively.

41

P.output[d] ∈ Z where d ∈ D are the outputs of P . So for example if we have

an isolated Nor part P with P.orientation = EAST , the values of its outputs will be

P.output[EAST] = 1 and P.output[d] = 0 for all other d ∈ D.

P.connect[d] ∈ L where d ∈ D specify the connectivity state of P . If a part P is

connected in a particular direction d to a neighbouring part Q then P.connect[d] = True

and also Q.connect[opposite(d)] = True. If a part P is not connected to its neighbour Q

which lies in direction d, then P.connect[d] = Q.connect[opposite(d)] = False. If a part

P has no neighbour in direction d then P.connect[d] = False.

The edges of parts can be regarded as terminals through which signals can be passed

between neighbouring parts. Parts do not need to be connected in order for signals to

pass between them. Each terminal of a part acts either as an input or as an output. If

a terminal has no explicit definition it is effectively an output producing a signal with a

value of zero.

It takes one time unit for a signal to propagate from a part’s inputs to its outputs or

for a part to respond to signals at its inputs.

Table 3.1 describes 24 part types, 23 of which are used in section 3.1.3. (The RUn-

Fuse part is not used, but is included in Table 3.1 for completeness). In Table 3.1

the letters N ,S,E and W are used to refer to the values of the input signals at the

NORTH,SOUTH,EAST and WEST edges of a part. These letters are also used to

indicate directions, where N is up the page, E is to the right of the page, S is down the

page and W is to the left of the page. The context should indicate which usage is meant.

An abbreviated notation is used for describing the relationship between a part’s inputs

and outputs. So, for example, if a part P lies in direction S of a wire part Q then when

referring to part Q the abbreviation N := S is used to mean that after one time unit,

Q.output[N] will take on the value of P.output[N]. In the abbreviated notation N := S

the N on the left hand side refers to the North terminal of Q, and the S on the right

hand side refers to the direction to part P : the direction that the input will be received

from.

42

1 Wire 2 Cross 3 Delta

N:=S N:=S,E:=W N,E,W:=S

4 Not 5 And 6 Or

N:=!S N:=min(E,W) N:=max(E,W)

7 Nand 8 Nor 9 Insulator

N:=!(E&&W) N:=!(E||W)

10 Push 12 Thrust 13 RFuse

When S!=0, push on When S!=0, push on When S!=0, connect
part that lies N, self in the S the parts that lie
in the N direction direction N and NE

14 LFuse 15 RUnFuse 16 LUnFuse

When S!=0, connect When S!=0, disconnect When S!=0, disconnect
the parts that the parts that the parts that
lie N and NW lie N and NE lie N and NW

19 RSlide 20 LSlide 21 Equal

When S!=0, apply a When S!=0, apply a N:=(E==W)
force on part that lies N, force on part that lies N,

in the E direction in the W direction

22 Pulse 24 Creator 25 Multiplier

N:=S when S changes Create a part in N:=E*W
from 0 to non-zero the N direction,
N:=0 otherwise with type given by S

26 Adder 28 Store 32 Toggle

N:=E+W If S!=0 and output N==0, If S!=0, toggle the
set output N to S. value of output N
If E!=0 or W!=0,
set output N to 0

Table 3.1. Part types supported by the CBlocks environment.

43

The notation used for expressions in Table 3.1 is that used by the C programming

language, summarized in Table 3.2.

Operator Name and meaning

+ Addition
Sum of operands

* Multiplication
Product of operands

== Equal to
1 if operands are equal, zero otherwise

!= Not equal to
zero if operands are equal, 1 otherwise

! Logical NOT
1 if operand is zero, zero otherwise

&& Logical AND
1 if both operands are non-zero, zero otherwise

|| Logical OR
1 if any operand is non-zero, zero otherwise

Table 3.2. Operators used in Table 3.1.

3.1.3 A self-replicating programmable constructor in the CBlocks envi-

ronment.

A self-replicating programmable constructor (SRPC) has been devised in the CBlocks

environment using the part types described in the previous section. The SRPC would be

far more complex were it not for the creator part type. This part type allows new parts

to be created from nothing in response to an integer signal that encodes the type and

orientation of the part to be created in a way that will be explained shortly.

Figure 3.1 illustrates the geometrical structure of the SRPC; the four main subsystems

are labelled. The instruction hopper contains a block of store parts which encode a

sequence that directs the SRPC to move around in its environment and create parts in

such a way as to construct another machine. This sequence of store parts is referred to

as the instruction tape. The length of the instruction tape places a limit on the size of

machine that the SRPC can construct. Self-replication is achieved when the instruction

tape contains a sequence of instructions for constructing a duplicate machine.

In the description of the SRPC that follows the terms parent and child are used to

refer to machines in a relationship where one instance of the machine has constructed or

is constructing another.

Figure 3.2 shows how the instruction tape is arranged in the machine. The arrows

44

Figure 3.1. The geometrical structure of the SRPC.

show the direction in which store parts move as the tape is advanced. The tape-advancing

mechanism ensures that the tape advances one part at a time and that the arrangement

shown in Figure 3.2 is maintained.

Figure 3.2. The arrangement of the instruction tape.

Figure 3.3 shows successive steps in the operation of the tape advancing mechanism.

In Figure 3.3 the size of the tape has been reduced and a characteristic portion of the

mechanism is shown. Blue lines between parts in Figure 3.3 represent connections between

parts. When two neighbouring parts are not connected they have a black line between

them. In step A the mechanism is not active. In step B signals enter delta parts 1 and

2 on the left-hand and right-hand sides of the mechanism. The signal on the right-hand

side of the mechanism enters rslide part 3 so that in step C rslide part 3 slides a store

45

part out of the way, leaving gap 4. Next push part 5 is activated, pushing the top row of

three store parts to the right, resulting in gap 6 as shown in D. After this lslide part 7 is

activated, causing store part 8 to move into gap 6. Then push part 9 pushes the bottom

row of three store parts to the left, resulting in gap 10 as shown in F.

It should be straightforward to see how the portion of the mechanism shown in Figure

3.3 leads to the tape-advancing motion depicted in Figure 3.2.

Figure 3.3. The operation of the tape advancing mechanism.

The reader contains logic that interprets signals from the instruction tape and acts

upon them. Figure 3.4 shows the logical structure of the reader.

The SRPC uses a creator part to create new parts as they are needed. This part

creates a new part whose type and orientation (i.e. orientation relative to the creator part

in the reader) are dependent on the value of the input signal that it receives. A signal

value of 4T + D encodes a part of type T and orientation D. Values of T for each part

46

Figure 3.4. The logical structure of the reader.

type are given in Table 3.1. The mapping between values of D and possible orientations

is {(0, N), (1, E), (2, S), (3,W)}.
Some of the store parts in the instruction tape encode values which tell the SRPC to

perform an action. The values used are as follows:

1001 = move east

1002 = move south

1003 = move west

1004 = move north

1005 = switch between read and copy phases

1006 = do nothing

No explicit instruction is needed in order to tell the reader to fuse newly created

parts together since the reader contains fuser parts that are always active and which fuse

together any parts that pass in front of them.

The copier is responsible for creating a duplicate instruction tape in a child SRPC.

Figure 3.5 shows the logical structure of the copier.

Figure 3.5. The logical structure of the copier.

The replication cycle has two phases: the ‘reading phase’ and the ‘copying phase’.

During the reading phase the instruction tape is interpreted by the reader. The last

47

instruction in the instruction sequence (code 1005) causes the machine to switch between

the reading and copying phases. During the copying phase the parent sends signals to the

child which cause a copy of the instruction tape to be created in the child SRPC. The child

machine is then complete and can begin constructing its own child. The parent machine

switches back to the reading phase and the replication cycle begins again. Figures 3.6 and

3.7 show two snapshots of the SRPC in action, showing which phase it is in and what it

is doing at each snapshot.

Figure 3.6. The parent SRPC in the reading phase, part way through constructing a child SRPC.

Figure 3.8 shows a parent SRPC and the child SRPC that it has produced. Notice

that the child is constructed so as to be oriented 90 degrees anticlockwise with respect

to the parent. This is done so that successive generations of SRPCs will fill up the two-

dimensional universe. It might be argued that because of this difference in orientation

the child is not an exact replica of the parent. However, since the CBlocks environment

is rotationally symmetric the logical and kinematical behaviour of parent and child can

reasonably be regarded as equivalent.

Figure 3.9 shows the state of the universe after the initial SRPC has produced two

child SRPCs, the first of which has produced a child of its own.

48

Figure 3.7. The parent SRPC part way through the copying phase.

Figure 3.8. A parent SRPC has produced a child.

3.1.4 Physical realism in the CBlocks environment

In what sense is the CBlocks environment more physically realistic than a cellular au-

tomaton? Cellular automata can of course be made from arrays of discrete parts with

each physical part corresponding directly to a cell in the abstract environment, as in [7].

A self-replicating system in such an environment would be able to alter the internal state

of a discrete part in the array but this would be the limit of its effect on the physical

environment. Such a system does not harness the mechanics of the physical environment

for the purpose of self-replication.

49

Figure 3.9. Three generations of SRPCs.

A physical self-replicating system capable of building itself from component parts

would have to make use of the mechanics of the environment in which the component

parts function in order to replicate itself. The CBlocks SRPC does this within the CBlocks

environment. This environment has rules of motion and interaction loosely based upon

the laws of motion and the mechanical interactions of physical machines. In this sense the

CBlocks environment can be said to be more physically realistic than cellular automata.

However, matter is not conserved in the CBlocks environment, since a creator part can

create other parts from nowhere. At first sight it seems that a creator part is not physically

realistic. Nevertheless, it is possible to envisage physical systems in which something like

a creator part can be made. For example, if a physical model based on CBlocks existed

on a two-dimensional surface and a second surface were placed just above this surface

then the second surface could contain a disorganised collection of parts moving about at

random. A creator part on the lower surface needing to create a part could wait for a part

50

of the correct type and in the correct orientation to pass above it on the upper surface

and then cause it to be transferred from the upper to the lower surface.

3.2 A 2D continuous space kinematic environment

3.2.1 Introduction

Having shown that it is possible to devise an SRPC in the CBlocks environment consid-

eration is now given to the implementation of a self-replicating system in an environment

supporting the same types of part as the CBlocks environment, but in which space is

continuous and parts interact according to Newtonian laws of motion.

Nodes is an environment in which disc-shaped parts interact with each other in a

boundless two-dimensional continuous space environment. There are several different

types of part, with each type of part performing a specific function. There are parts

that perform logical functions, parts that connect other parts together and parts that

exert forces and cause motion. Parts have four terminals which are used to send and

receive integer valued signals to and from other parts. The motion of parts is governed

by Newtonian laws. In addition to these laws there are also rules that determine how

signals pass between parts, how parts can be connected together and how they should

behave when they are connected. Automata can be constructed from collections of parts

connected up in an appropriate way.

3.2.2 Detailed description of the Nodes environment

In Nodes time is discrete and moves forward in steps of 1 unit.

A part L has the fixed property L.type which specifies the type of L and does not

change from one time step to another. L also has the property L.identifier, which is

a positive integer unique to each individual part. (L.identifier is used when two parts

are connected together and each part needs to keep track of which parts it is directly

connected to).

Other properties of L can vary from one time step to another. These properties are:

L.location ∈ R × R is the location of L in two dimensional space. The notation
−−→
LM

is short for M.location − L.location. L.location.x refers to the x coordinate of L and

L.location.y refers to the y coordinate of L.

51

L.orientation ∈ [0, 2π) is the orientation of L in radians anticlockwise from the vec-

tor (0,1).

L.velocity is the velocity of L. L.angularvelocity is the angular velocity of L.

Every part has a mass of 1 unit and a moment of inertia about its centre of 1 unit.

Therefore momentum is numerically equal to velocity, and the angular momentum and

angular velocity of a part about its centre are also numerically equal.

Forces that act on a part arise in several different ways. All parts in the universe ex-

perience a frictional force proportional to their velocity, and an angular frictional force

proportional to their angular velocity.

friction(L) = c× L.velocity

angularfriction(L) = d× L.angularvelocity

Parts have a radius of 8 unit and there is a repulsive force between any pair of over-

lapping parts L and M .

If ∥
−−→
LM∥ < 16 and ∥

−−→
LM∥ > 0 then repulsion(L,M) = f ×

−−→
LM

∥
−−→
LM∥

× (16− ∥
−−→
LM∥)2

otherwise, repulsion(L,M) = 0

Parts can be connected to other parts using four terminals that are evenly spaced around

the edge of a part.

L.connect[N], L.connect[E], L.connect[S], L.connect[W] specify the connectivity state of

a part L. If a terminal t of a part P has no connection then P.connect[t] = 0. If a part P

is connected via a terminal t to a part L then P.connect[t] = L.identifier and there will

exist a terminal s of L such that L.connect[s] = P.identifier.

When two parts are connected they exert forces on each other to bring themselves into

proximity. The function rotate(v, a) rotates the vector v through angle a.

proximity(P,L) = g × (P.location+ 2× rotate(t, P.orientation)− L.location)

52

Angular forces are also exerted on connected parts, firstly to direct the terminal t to

point towards the connected part L:

direction(P,L) = h× angle(
−→
PL, rotate(t, L.orientation))

where angle(A,B) ∈ [−π, π) is the angular difference between vectors A and B.

Secondly to ensure that terminal t is pointing in the opposite direction to terminal s:

alignment(P,L) = j × angle(−rotate(t, P.orientation), rotate(s, L.orientation))

Let Lt denote the state of part L at time t.

We now have enough information to define for a universe full of parts how Lt+1 depends

upon Lt and all parts M that L interacts with.

Lt+1.location = Lt.location+ Lt.velocity

Lt+1.orientation = Lt.orientation+ Lt.angularvelocity

Lt+1.velocity = Lt.velocity + friction(L)+∑
M (repulsion(L,M) + proximity(L,M)) + E

Lt+1.angularvelocity = Lt.angularvelocity + angularfriction(L)+∑
M (direction(L,M) + alignment(L,M))

where E represents any possible forces applied on a part L by one of the part types

RSlide, LSlide, Push or Thrust.

The system as described is capable of exhibiting a wide range of behaviours depending

on the choice of values for the constants c, d, f, g, h and j. For example, by having no

friction we obtain a system that behaves like an ideal gas in which particles collide and

rebound off one another endlessly. The following considerations were taken into account

when choosing values for these constants:

• Given that time is discrete the maximum speed that a part can reach should not be

so large that a part can move a significant fraction of its diameter in a single time

unit. (The maximum speed depends both on the friction constants and the applied

force constant).

53

• The forces between connected parts should be set so that the level of damping caused

by the friction forces is neither so great that connected parts take a long time to

come into alignment nor so small that connected parts oscillate excessively.

• With a view to possible future physical realisation of the system the friction constants

should be chosen so that parts move somewhat like discs floating on the surface of

water.

• Constants should be chosen so that the time taken to run simulations is not excessive.

The values: c = 0.9, d = 0.9, f = 0.1, g = 0.04, h = 0.05, j = 0.1 were found to satisfy

these considerations. These values also result in the motion of parts being generally much

slower than the propagation of signals between parts.

Note that the system is deliberately defined as a discrete time system rather than as

an approximation to a continuous time system so that the system described above can be

simulated without any ambiguity as to whether the results of simulating the system are

dependent on the degree of approximation used.

3.2.3 Signals

The terminals which are used to connect parts together are also used as inputs and out-

puts for passing signals between parts. Parts do not need to be connected in order for

signals to pass between them. If an output terminal is within a distance of 0.5 units from

an input terminal then any signal it is outputting will be received by the input terminal.

Each terminal is either an input or an output. If a terminal has no explicit definition it is

effectively an output producing a signal value of zero. The absence of a signal corresponds

to a value of zero.

L.output[N], L.output[E], L.output[S], L.output[W] ∈ Z are the outputs of L.

Note that unlike in CBlocks, and because the orientation is a continuous value, the direc-

tion of terminals are specified relative to the orientation of a part so, for example, if we

have an isolated Not part L the values of its outputs will be L.output[E] = L.output[S] =

L.output[W] = 0, L.output[N] = 1 regardless of its orientation.

It takes one time unit for a signal to propagate from a part’s inputs to its outputs, or

for a part to respond to signals at its inputs. A part’s type determines how it responds

to input signals and whether it produces any output signals.

54

The Push, RSlide and LSlide parts described in Table 3.3 exert forces on other parts

when activated by a signal. The Thrust part exerts a force on itself when activated by a

signal. For each of these parts, the magnitude of the force is the constant k = 0.5.

3.2.4 Part types

Table 3.3 describes 23 part types. In Table 3.3 the letters N,S,E and W (for North, South,

East and West) are used to refer to terminals and also to indicate directions. The context

should indicate which usage is meant.

The notation used for expressions in Table 3.3 is that used by the C programming

language, summarized in Table 3.2.

3.2.5 A self-replicating machine in the Nodes environment

The kinematics of the Nodes environment are much more complex than those of the

CBlocks environment and this makes it much more difficult to devise easily-controllable

mechanisms in the Nodes environment.

For example whereas in the CBlocks environment the behaviour of a rigid structure

under the influence of, say, a RSlide part is easy to state, the same is not true in the

Nodes environment where the behaviour of a connected set of parts influenced by a force

produced by a RSlide part depends on the number of parts in the set (i.e. the mass of the

set) and the position of the point of application of the force relative to the centre of mass

of the set of parts.

Also the computational requirements for simulating the Nodes environment are signif-

icantly more than for the CBlocks environment, largely because of the more complex laws

of motion.

Therefore, the first question to be asked about the Nodes environment, using the same

part set as in the CBlocks environment, is whether it is capable of supporting any type

of self-replicating system at all, let alone one capable of being programmed to construct

other structures. The following sections show that it is indeed possible to devise a self-

replicating system in the Nodes environment, albeit one with a limited constructional

capability.

3.2.6 Filaments and self-assembly

A linear chain of parts is referred to as a filament. An experimental investigation into the

behaviour of parts and structures in the Nodes environment revealed that it is straight-

55

1 Insulator 2 Wire 9 Delta

N:=S N,E,W:=S

3 Not 10 NDelta 15 Cross

N:=!S N,E,W:=!S N:=S, E:=W

22 NotNot 12 Or 21 Maj

N:=!!S N:=(E||W) N:=E*W+E*S+S*W

17 Pulse 8 FlipFlop 24 Equal

N:=S only when S changes When E!=0, N=E&&(E==W)||
from zero to non-zero. set N and S to 1. E&&(E==S)||

N:=0 otherwise When W!=0 S&&(S==W)
set N and S to 0.

0 Store 7 LFuse 6 RFuse

N set to S when S changes When S!=0 When S!=0
from zero to non-zero, reset connect the parts connect the parts

when E or W!=0 that lie N and NW that lie N and NE

14 LUnFuse 13 RUnFuse 11 Detect

When S!=0 When S!=0 S is non-zero
disconnect parts disconnect parts only when

that lie N and NW that lie N and NE a part lies N

4 Thrust 23 Push 19 LSlide

When S!=0 When S!=0 When S!=0
apply a force apply a force apply a force

on self in S direction on part that lies N on part that lies N
in the N direction in the W direction

18 RSlide 20 Creator

When S!=0, apply a force Create a part in
on part that lies N the N direction,
in the E direction with type given by S

Table 3.3. Part types in the Nodes environment.

56

forward to devise a machine M that will advance along a filament. If the filament is made

from store parts then signals from these store parts can be fed to a creator part in M

which will create other parts with type and orientation dependent on the values stored in

the store parts. A fuse part in M can be placed near to the creator part in such a way as

to connect the newly created parts together. A value of 1 in a store part will not cause

any part to be created but will instead leave a gap in the sequence of created parts. The

filament of store parts can thus be programmed to cause any desired series of filaments to

be created (Figure 3.11).

By investigating how filaments containing slide, thrust and push parts behave, it was

found possible to arrange for pairs of filaments to assemble to form structures 2 parts

thick. For example, the pair of filaments in Figure 3.11 will move as shown in Figure 3.12

to form a 16 by 2 part structure.

3.2.7 Subsystems of the self-replicating machine

The self-replicating machine (SRM) that was devised in the Nodes environment is made

from several such 2-part-thick structures, each of which carries out a particular function

in the machine. The machine is not a single connected collection of parts as the CBlocks

SRPC was, but is a disconnected collection of smaller machines, each referred to by a

descriptive name. These machines are introduced below, along with acronyms that are

used to refer to them later on. Some of the acronyms are used before they are defined.

• Instruction Tape (IT): a filament of store parts that contains the information needed

for the machine to make a duplicate of itself.

• Tape Copier (TC): a machine that copies the Instruction Tape and its contents to

make a duplicate Instruction Tape (IT2).

• Dragger (D): a machine that drags IT2 and EFTR to a new location in the environ-

ment.

• Releaser (R): a machine that moves along IT2, slowly catching up with D. When R

has caught up with D, it causes D to release IT2.

• Initial Tape Reader (ITR): a machine that creates filaments of parts according to

information in IT. This machine begins the first replication cycle. The filaments of

parts created self-assemble to form TC, RTR, EFTR, R and D.

57

• End-Finding Tape Reader (EFTR): a machine that attaches itself to the end of IT2

as it is being dragged away, and which begins a new replication cycle when IT2 has

reached its destination by performing the same function as ITR.

• Rotating Tape Reader (RTR): a machine that slowly rotates so as to encounter IT

after all other activities have stopped, and then performs the same action as ITR,

except that it omits the construction of TC, so that the instances of EFTR, R and

D that RTR creates will act on IT, rather than a duplicate of IT, ultimately causing

IT to be dragged to a different location in the environment and another replication

cycle to begin.

As was the case in the CBlocks environment, the SRM would be far more complex

were it not for the creator part type which is the least physically realistic part in the

Nodes environment. The creator part will create a part of type T (from Table 3.3) and

orientation Dπ/2 when fed a value of 1 + 4T +D where D ∈ {0, 1, 2, 3}.
Figure 3.10 shows the machine shortly after it starts. ITR is advancing along IT,

creating a filament of parts.

IT
ITR

Figure 3.10. The initial configuration of the environment.

Figure 3.11 shows the machine after the two filaments that will assemble to form TC

have been created and Figure 3.12 shows how these filaments come together to form TC.

In Figure 3.13 TC, RTR, EFTR, R and D have all been created and TC is beginning

to create IT2. In Figure 3.14 D has attached itself to IT2 and is beginning to drag IT2

away.

Figure 3.15 shows EFTR attaching itself to the end of IT2. Also R has been activated

and is beginning to move towards D. In Figure 3.16 R has caught up with D, causing D

to release IT2.

Figure 3.17 shows EFTR beginning to fold up after IT2 stops moving. Figure 3.18

shows a new replication cycle beginning with IT2 and EFTR.

58

TCITR

IT

Figure 3.11. The two filaments that form TC have been created.

IT

TC

ITR

Figure 3.12. TC assembling itself.

Figure 3.19 shows part of the environment after several replication cycles. There are

5 machines in this part of the environment, all of which are still functioning correctly, all

descended from a single original machine. Occasionally machines are rendered incapable

of further replication by collision with, and interference from, parts of other machines.

3.3 Evaluation and research directions

This chapter has shown that it is relatively straightforward to devise self-replicating sys-

tems in kinematic environments supporting a rich set of part types and a special part that

can create any other part out of nowhere.

Referring to Figure 2.18 we can argue that we have moved from the abstract side of

the graph towards the physically realistic side at the expense of having a moderately large

set of parts, at least one of which (the Creator part) is highly complex.

The number of each type of part used in the CBlocks and Nodes SRMs is given in

59

IT

DITR EFTR RTR TC IT2R

Figure 3.13. TC is beginning to duplicate IT.

IT

D R EFTR RTR
IT2

Figure 3.14. D dragging IT2 away from IT.

tables 3.4 and 3.5 respectively. These tables show that in each SRM a handful of parts

are used a great deal, whereas other parts are used very infrequently.

There is also considerable redundancy in the set of components used in both envi-

ronments. In the CBlocks environment, for example, there are 12 different types of part

that perform arithmetical or combinational logic functions, and 6 types of part that exert

forces on other parts.

Region G in Figure 2.18 on page 36 represents the class of autonomous physical self-

replicating systems made from simple parts or raw materials and capable of constructing

a wide range of structures. In order to progress from the systems presented in this chapter

towards this goal the following three questions need to be addressed.

1. Can we devise an SRPC in a kinematic environment that does not make use of a

Creator part?

2. Can the range of part types used be reduced to remove the redundancy that is

60

IT

EFTR
RTR

IT2

R

Figure 3.15. EFTR attaching itself to IT2. R is moving towards D

D

R

IT2

Figure 3.16. R causing D to release IT2.

61

EFTR

IT2

Figure 3.17. EFTR folding up.

New TC

EFTR

IT2

Figure 3.18. EFTR beginning a new replication cycle on IT2.

62

Figure 3.19. Part of the environment after several replication cycles.

Store 1777 in the instruction tape, 5 elsewhere
Delta 172
Wire 124
Insulator 108
Pusher 32
Left-slider 18
Right-slider 15
Toggle 12
15 Others 48 (less than 6 of each, four part types only used once)

Table 3.4. Frequency of the different types of part used in the CBlocks SRPC.

Store 251 in the instruction tape, 4 elsewhere
Delta 43
NDelta 19
Toggle 18
Rfuse 14
Lfuse 10
Thrust 10
Wire 10
14 Others 129

Table 3.5. Frequency of the different types of part used in the Nodes SRM.

63

present in the set of part types used in the CBlocks and Nodes environments?

3. Can the environments themselves be made more physically realistic?

In this thesis we focus on questions 1 and 2 and hope to find out whether it is possible

in principle to devise an SRPC in a kinematic environment made from parts chosen to be

as simple as possible without considering how the parts could be physically implemented.

An SRM without a Creator part will need subsystems to carry out the following tasks.

• Fetch parts from a known location or from a disorganised collection.

• If parts are not already categorised then discriminate between different parts in order

to classify them.

• Store parts (this is not strictly necessary, but an SRM that does this is likely to be

more efficient than one that does not).

• Transport parts to the construction area.

To begin to answer question 2, consider the different roles that individual parts in

CBlocks and Nodes fulfill, shown in table 3.6.

Structure
Logic, arithmetic and signal propagation
Exerting forces on parts
Rotating parts
Connecting parts together
Disconnecting parts

Table 3.6. Roles of component parts in the CBlocks and Nodes environments.

Any type of part can perform a structural function, therefore it seems plausible that

an SRPC in an environment like CBlocks could be made using only five different types

of part. In order to rotate parts in this type of environment, which has laws of motion

that do not support the rotation of objects, a special purpose ‘rotating’ part is required.

In the Nodes environment the laws of motion implicitly permit part-rotation, so only four

different types of part may be needed to make an SRPC in this environment.

A decision must be made at this point about whether to use a discrete space or a

continuous space environment to answer questions 1 and 2 given above. Two disadvantages

of the continuous-space Nodes environment have already been discussed in 3.2.5: the

computational requirements for simulating the environment are high, and although the

64

environment is deterministic the detailed motion of structures within the environment is

difficult to predict and therefore difficult to reason about. For these reasons continuous

space environments are not pursued any further in this thesis. Since we will be using a

discrete space environment, and since we envisage that the set of part types that we will

be using will be akin to a subset of the set used in the CBlocks environment, we also

decide at this point that time shall be discrete.

3.4 Two or three dimensions?

The signal crossing problem is the problem of how two signal-propagating paths can

cross over in a 2D plane and how they can do so without interfering with each other’s

operation [16]. This problem can be solved in a number of ways depending on the signal

representation used and the type of component parts that are available for making signal

paths. When attempting to make the range of part types as simple as possible signal

crossing becomes an inconvenience. The CBlocks environment has a cross part that

performs a signal crossing function. If we wish to do away with this part and implement

it using, for example, a collection of NOR-gates then there is no difficulty in doing this

but 12 gates are required.

In a two dimensional kinematic environment signal crossing mechanisms based on

moving parts can be made. The operation of the mechanism will depend upon the part

types that the environment supports. A simple example is given in Figure 6.3 on page

148.

By moving from two dimensions to three dimensions we can remove the signal crossing

problem altogether.

Another benefit that 3D space has over 2D space is that the extra dimension permits

a larger number of mechanisms to be placed within a given distance of a particular lo-

cation in space. This reduces the time that it takes for information to propagate from

one mechanism to another, potentially increasing the operating speed of a collection of

mechanisms.

Having six sides from which to access a part rather than four is also beneficial. It

reduces signal routing congestion problems and also makes it easier for a part to be both

examined and manipulated within the same mechanism, which has relevance for question

1.

In the following chapters these considerations are taken into account and questions 1

and 2 are both answered.

Chapter 4

A 3D Kinematic Environment

with 6 Part Types

4.1 Introduction

Following the considerations of section 3.3 this chapter describes a discrete space, discrete

time three-dimensional kinematic simulation environment called CBlocks3D. This is an

extension into three dimensions of the two-dimensional CBlocks environment described in

section 3.1. The range of part types in CBlocks3D has been reduced considerably from

that in CBlocks. The signals that pass between parts are Boolean valued in CBlocks3D

rather than integer valued as in CBlocks. There are only 6 different part types: a signal

propagation part (the wire part), a signal processing part (the nor part), a part for moving

other parts (the slide part), a part for rotating other parts (the rotate part), a part for

connecting other parts (the fuse part) and a part for disconnecting other parts (the unfuse

part). It takes one time unit for a part to respond to an input signal. In a single time

unit, a part may move one unit in any one of six directions under the action of a slide

part. When a part moves, all parts directly or indirectly connected to it also move.

This chapter describes the environment, its rules of motion and the parts that it

supports, and then describes some of the simple structures that can be made in this

environment. Chapter 5 then describes a self-replicating programmable constructor with

subsystems made from or based upon the simple structures described in this chapter.

66

4.2 Describing parts

We define six direction vectors

EAST = (1, 0, 0) WEST = (−1, 0, 0)

NORTH = (0, 1, 0) SOUTH = (0,−1, 0)

FRONT = (0, 0, 1) BACK = (0, 0,−1)

Let D denote the set of these vectors

D = {EAST,WEST,NORTH,SOUTH,FRONT,BACK}

We define the function

opposite((x, y, z)) = (−x,−y,−z)

Let L be the set {True, False}, and let T denote the set of part types

T = {Wire,Nor, Slide, Fuse, UnFuse,Rotate}

A part is completely described by the tuple

(P.location, P.primary, P.secondary, P.type, P.output, P.connect)

where
P.location ∈ Z× Z× Z
P.primary ∈ D

P.secondary ∈ D \ {primary, opposite(primary)}
P.type ∈ T

P.output ∈ L× L× L× L× L× L

P.connect ∈ L× L× L× L× L× L

P.location is a 3-tuple (x, y, z) which specifies the location of the part.

Two vectors are needed to specify the orientation of a part P in three dimensional

discrete space. The primary axis P.primary is a vector that lies on the line from the

centre of P to the centre of one face of P (this face is referred to as the active face of P).

The secondary axis P.secondary is perpendicular to the primary axis. For example, in

Table 4.1 the primary axis of each part points up the page (NORTH) and the secondary

axis points to the right of the page (EAST).

The notation X[Y] is used to refer to the Y th element of the tuple X. It is convenient

to use the direction vectors D to index the P.output and P.connect tuples, so we define

67

that the vectors NORTH,EAST, SOUTH,WEST, FRONT and BACK can be used to

index the 1st, 2nd, 3rd, 4th, 5th and 6th elements of a tuple respectively.

P.output[d] ∈ L where d ∈ D are the outputs of P . So for example if we have

an isolated Nor part P with P.primary = EAST , the values of its outputs will be

P.output[EAST] = True and P.output[d] = False for all other d ∈ D.

P.connect[d] ∈ L where d ∈ D specify the connectivity state of P . If a part P is

connected in a particular direction d to a neighbouring part Q then P.connect[d] = True

and also Q.connect[opposite(d)] = True. If a part P is not connected to its neighbour Q

which lies in direction d, then P.connect[d] = Q.connect[opposite(d)] = False. If a part

P has no neighbour in direction d then P.connect[d] = False.

The faces of parts can be regarded as terminals through which Boolean signals can be

passed between neighbouring parts. Parts do not need to be connected in order for signals

to pass between them. Each terminal of a part acts either as an input or as an output. If

a terminal has no explicit definition, it is effectively an output producing a False signal.

It takes one time unit for a signal to propagate from a part’s inputs to its outputs or

for a part to respond to signals at its inputs.

Table 4.1 describes the function of each type of part. A graphical representation and

colour coding scheme is also shown for each part type. In Table 4.1, the letters N , E, S,

W , F and B are used to refer to the values of the input signals at the NORTH, EAST ,

SOUTH, WEST , FRONT and BACK faces of a part. In these diagrams, NORTH is

up the page, SOUTH is down the page, EAST is to the right of the page, WEST is to

the left of the page, FRONT is out of the page and BACK is into the page. The Boolean

¬ (negation) and ∨ (OR) operators are used in Table 4.1.

The Wire, Nor and Rotate parts have rotational symmetry about their primary axis

and can therefore be in any one of 6 functionally distinct orientations. The Slide, Fuse

and Unfuse parts have no rotational symmetry and can therefore be in any one of 24

distinct orientations.

Graphical representations for each part type in each possible orientation are shown

in Table 4.2 and will be used later on for diagrams of systems in CBlocks3D. The letters

beneath each graphic show the orientation of the part. The first letter gives the orientation

of the primary axis and the second letter gives the orientation of the secondary axis. For

example, a part in the orientation SF has its primary axis pointing in the SOUTH

direction and its secondary axis pointing in the FRONT direction. For parts that are

symmetrical about their primary axis the second letter is omitted.

68

1 Wire 2 Nor 3 Slide

N,E,W,F,B := S N := ¬(E ∨ S ∨W ∨ F ∨B) If S then move the
part that lies NORTH

one unit EAST

4 Fuse 5 UnFuse 6 Rotate

If S then connect If S then disconnect If S then rotate
the parts that the parts that the part that

lie NORTH and lie NORTH and lies NORTH through
NORTH-EAST NORTH-EAST 90 degrees

Table 4.1. Part types in CBlocks3D.

Note that for the representations given in Table 4.2 NORTH is up the page and

FRONT is out of the page. In later diagrams in this thesis the correspondence between

page axes and CBlocks3D directions will vary because it is often easier to describe a mech-

anism viewed from one direction than from another. In these situations the representation

used for a part in a particular orientation will change accordingly. For example a slide

part in the SF orientation when NORTH is up the page and FRONT is out of the page

will be represented in the same way as a slide part in the EN orientation when WEST

is up the page and NORTH is out of the page.

In accordance with questions 1 and 2 on page 63 the main criterion that influenced

the choice of this set of part types was that it should contain as little redundancy as

possible yet still span all of the features that the environment supports. In section 3.3

we speculated that only 5 types of part might be required. Here we have chosen to use

two distinct part types for signal propagation and logical operations rather than combine

these functions into a single part type. It was found that by doing this circuits were

considerably simpler and signal routing was made easier.

This set of part types is considerably simpler than that used in the CBlocks envi-

ronment and comparable to the complexity of the sets used by von Neumann and Codd,

but with the addition of parts required for manipulating the kinematic features of the

CBlocks3D environment. It is therefore likely that this is among the simplest possible

part sets in this particular environment that spans all of the features that the environ-

ment supports.

69

Wire

Nor

Rotate

Slide

Fuse

UnFuse

Table 4.2. Graphical representations of parts.

70

4.2.1 Evolution of a universe

Before defining the algorithm for the evolution of the CBlocks3D universe, the following

definitions are needed.

If p = ((x, y, z), P, S, T,O,C) and V = (x′, y′, z′) ∈ D then p+V = ((x+x′, y+ y′, z+

z′), P, S, T,O,C).

We define the neighbour relation ∥ for parts p1, p2

p1 ∥ p2 if and only if p1.location− p2.location ∈ D

And the indirect-neighbour relation ∥I for parts p1, p2

p1 ∥I p2 if and only if p1 ∥ p2

or there exists p3 such that p1 ∥ p3 and p3 ∥I p2

It is also useful to have a neighbour predicate which is true if and only if p2 is a

neighbour of p1 in direction A

neighbour(p1, p2, A) if and only if p2.position− p1.position = A

We define the directly-connected relation ◃▹D for parts p1, p2

p1 ◃▹Dp2 if and only if there exists A ∈ D such that

neighbour(p1, p2, A) and p1.connect[A] = p2.connect[opposite(A)] = True

And the indirectly-connected relation ◃▹ for parts p1, p2

p1 ◃▹ p2 if and only if p1 ◃▹D p2

or there exists p3 such that p1 ◃▹D p3 and p3 ◃▹ p2

The dilate function is used to calculate which parts from set S should move when a

part p is moved in direction d by a slide part. The parts that should move are parts that

are indirectly connected to p and also those parts that move as a result of being pushed

along by other parts.

dilate(p, d, S) ={q ∈ S | q = p or

there exists r ∈ dilate(p, d, S) such that neighbour(r, q, d) or q ◃▹ r}

71

A universe evolves through an infinite sequence of states S0, S1, S2, . . .

S0 completely determines subsequent states. Sn+1 can be determined from Sn using

the the algorithm given below:

Step 1 Make a record of which Slide, Rotate, Fuse and UnFuse parts have True inputs.

Calculate new outputs for every Nor and Wire part.

Step 2 Rotate any parts to be rotated by the action of any Rotate parts. Alter any

connections to be altered by the action of any Fuse or UnFuse parts.

Step 3 Work out whether any parts will be moved by the action of any Slide parts.

Step 4 Update the location of every part that is to be moved.

A formal description of this algorithm follows. This algorithm adds parts to the

temporary sets In, Jn, An and Md,n where d ∈ D, in the course of computing Sn+1 from

Sn.

72

Step 1

For each part p in Sn

Set p′ = p

If p.type = Wire

If there exists a part q such that

neighbour(q, p, p.primary) and q.output[p.primary] = True

p′.output = (True, True, True, True, True, True)

p′.output[opposite(p.primary)] = False

else

p′.output = (False, False, False, False, False, False)

If p.type = Nor

If there exists a part q such that neighbour(p, q, d)

and d ̸= p.primary and q.output[opposite(d)] = True

p′.output = (False, False, False, False, False, False)

else

p′.output = (False, False, False, False, False, False)

p′.output[p.primary] = True

If (p.type = Slide or p.type = Rotate

or p.type = Fuse or p.type = UnFuse) and there exists a part q

such that neighbour(q, p, p.primary) and q.output[p.primary] = True

Add p′ to An

Add p′ to In

73

Step 2

For each part p in In

Set p′ = p

For every part q in An such that neighbour(q, p, q.primary)

If q.type = Rotate

Rotate p′ 90 degrees in a right-hand direction about q.primary

else if q.type = Fuse and there exists a part r in In

such that neighbour(p, r, q.secondary)

p′.connect[q.secondary] = True

else if q.type = Unfuse and there exists a part r in In

such that neighbour(p, r, q.secondary)

p′.connect[q.secondary] = False

For every pair of parts q, r in An such that

neighbour(q, r, q.primary) and neighbour(r, p, q.secondary)

If q.type = Fuse

p′.connect[opposite(q.secondary)] = True

else if q.type = Unfuse

p′.connect[opposite(q.secondary)] = False

Add p′ to Jn

Step 3

For each part p in Jn

If there exists a part q in An such that neighbour(q, p, q.primary)

and q.type = Slide

Add dilate(p, b, Jn) to Mb,n, where b = q.secondary

Add all parts in Jn but not in any Md,n to Sn+1

Step 4

For each part p in Md,n

Add p+ d to Sn+1

In Step 2 it is illegal for a part to be operated on by more than one rotate part at any

time, and it is illegal for both a fuse and unfuse part to operate on the same connection at

the same time. In Step 3 it is illegal for a part to be in both Md,n and Mc,n where c ̸= d.

74

It is also illegal for any two distinct parts in Sn to have the same location.

These ‘illegal’ conditions are specified to avoid having to deal with conflict situations

that would arise, for example, if an attempt were made to slide a part in two different

directions at the same time or if an attempt were made to move two parts into the same

location. Of course, rules could be written to resolve such conflict situations (as Arbib

does in [4]), but since such situations do not arise in any of the mechanisms described in

this thesis, and since a description of these conflict resolution rules would be lengthy, we

simply define these situations as illegal and rule that no mechanism should violate these

conditions.

4.3 Simple mechanisms

In this section several simple mechanisms are described which are used as the building

blocks of more complex structures in Chapter 5.

4.3.1 Signals and logical values

There are several different ways in which signals, signal paths and logic gates can be used

for representing and processing logical values. It is necessary here to distinguish between

the True and False values that the outputs of individual wire and nor parts can take, and

the logical value being represented by a collection of parts. We will use the terms ‘logic

0’ and ‘logic 1’ to refer to the value being represented by a collection of parts.

One way of representing logical values using a collection of parts is to stipulate that

an entire signal path connecting one logic element to the next represents a single logical

value. If all of the wire parts in the signal path are outputting a True signal then the

path represents a logic 1 value. If none of the wires in the signal path are outputting a

True signal then the path represents a logic 0 value. Other states of the path represent a

transition from one logic value to another. This representation will be referred to as the

static signal representation.

Alternatively we could stipulate that the presence of a True signal at a particular

location at a particular time represents a logic 1 value and its absence represents a logic

0 value. The advantage of this approach is that a sequence of successive values can be

sent serially into one end of a signal path and processed or decoded in serial fashion. The

disadvantage of this approach is that a timing signal must be present somewhere within

a circuit to indicate when the output of a particular part should be sampled. The timing

signal can be sent along a separate pathway, or it could be a signal that precedes the

75

signal that represents the logical value on the same signal path. This representation will

be referred to as the pulse signal representation.

It is also useful to employ a third representation that is similar to the pulse signal

representation, but in which a logic 1 value is represented by a sequence of 4 consecutive

True values on a signal path. The reason for this is that some circuit elements require

the presence of a signal on an input for 4 time units in order for the signal to propagate

throughout the element before the input changes. This representation will be referred to

as the 4-pulse signal representation.

4.3.2 Logic gates

Regardless of which of these representations is used in a circuit, the structure of combi-

natorial logic gates is the same. Figure 4.1 shows how the Nor part can be used as the

basis for other logic gates.

Figure 4.1. NOT, OR, AND and NAND gates made from NOR gates.

If a pulse signal or 4-pulse signal representation is used then circuits must be arranged

so that values arriving at all inputs to a gate are synchronised with each other.

For some gates it is possible to use different representations for different inputs. For

example, if input A of an AND gate uses the static signal representation and input B uses

the pulse signal representation then the output from the AND gate will be in the pulse

signal representation.

76

4.3.3 Edge detection

Figure 4.2 shows a circuit that will output a 4-pulse signal logic 1 value at X when the

value on static signal path A changes from logic 0 to logic 1.

Figure 4.2. Circuit for detecting the rising edge of a signal.

4.3.4 Signal loops

A loop of wire parts such as that shown in Figure 4.3 can be used to store a sequence of

signals. The signals will propagate around the loop endlessly.

Figure 4.3. A sequence of signals stored in a loop of wire parts.

The addition of two nor parts to this signal loop (Figure 4.4) allows a sequence of

signals to be injected into an otherwise empty loop at input A, and also allows a loop to

be reset into an empty state by applying a True signal at B for the length of time that it

takes signals to propagate once around the loop. This type of signal loop is called a gated

signal loop. Figure 4.5 shows how two gated signal loops can be held against one another

so that signals from one can be copied into the other.

77

Figure 4.4. A gated signal loop incorporating two Nor parts.

Figure 4.5. A sequence of signals being copied from one loop to another.

4.3.5 Flip flops

A Set-Reset flip flop is a circuit element which, when it receives a logic 1 value on its Set

input, will enter a state in which it outputs a logic 1 value, and when it receives a logic

1 value on its Reset input will enter a state in which it outputs a logic 0 value. If both

Set and Reset inputs receive a logic 1 value at the same time then the behaviour of the

element is not defined, so circuits must be designed so that this does not occur.

Figures 4.6 and 4.7 show two different flip flop designs, each of which uses a different

representation for its inputs and has different properties that determine its suitability in

a given context.

The flip flop shown in Figure 4.6 can use the static signal or 4-pulse signal represen-

tations for its inputs. In order for a signal to propagate through the flip-flop and alter its

78

Figure 4.6. A Set-Reset flip-flop made from Wire and Nor parts.

state, a signal must be present on an input for a minimum of 4 time units. The output of

the flip-flop uses the static signal representation.

Figure 4.7. A Set-Reset flip-flop that makes use of Slide parts.

The flip flop shown in Figure 4.7 can use any of the three signal representations for

its inputs. This flip flop is able to respond to a pulse 1 time unit long by making use of

slide parts to move the flip-flop’s internal mechanism. The nor part in this flip-flop is not

connected to either of the slide parts. If it were then the whole mechanism would move

EAST or WEST , rather than just the nor part. If this flip-flop is used in a machine that

moves around in its environment then the nor part could be left behind because the nor

part is not connected to the rest of the mechanism. To solve this problem, the nor part

could be enclosed by a cage made from other parts to prevent it from being lost, or an

additional mechanism using fuse and unfuse parts could be employed to make sure that

the nor part is connected to the rest of the mechanism whenever neither input is asserted.

79

4.3.6 1:4 pulse converter

In a circuit that uses a mixture of signal representations it may be necessary to use a pulse

converter to convert a pulse 1 time unit long into a pulse 4 time units long. The circuit

element shown in Figure 4.8 does this: a pulse signal logic 1 at input A will be converted

to a 4-pulse signal logic 1 at output B. The mechanism makes use of a slide part to

respond to a pulse 1 time unit long. The mobile nor part C in Figure 4.8 is normally

connected to the rest of the mechanism. It is only disconnected when a pulse arrives, and

then reconnected again when the mechanism has finished its operation.

Figure 4.8. 1:4 Pulse Converter for converting between pulse signal and 4-pulse signal represen-
tations.

4.3.7 Transporting parts

Figure 4.9 shows how slide parts can be used to make a path along which other parts can

travel. Each of the slide parts in Figure 4.9 has a nor part providing it with a True signal.

The dashed square stands for any part.

Figure 4.9. A path along which parts can travel.

If any of the nor parts in Figure 4.9 is fed a True signal on any of its inputs it will

stop producing an output signal and cause any part travelling along the path to stop at

the corresponding location on the path. This behaviour can be used as the basis for a

mechanism for transporting parts to a specific location.

80

4.3.8 Encoders and decoders

In a large circuit it may be necessary to transmit a signal from one region of the circuit to

a distant region to activate an element in the distant region. If there is a need for several

such signals then the number of signal paths leading from one part of the circuit to the

other can be reduced by multiplexing the signals onto a single path. There are a number

of different possible ways of multiplexing signals. The method described here uses an

encoding scheme in which each signal is assigned a unique encoding which is transmitted

serially along the communication path and decoded at the other end. This method can

be used when it can be guaranteed that the interval between any pair of signals being

asserted is longer than the time taken to encode the signal onto the communication path.

The left-hand circuit in Figure 4.10 is an encoder that will output at X the sequence

101010101 when a True signal is input at A. Each of the parts labelled B0, B1 and B2

may be omitted to alter the sequence that will be output, so that any of the sequences

10B00B10B201 can be generated.

Figure 4.10. An encoder and decoder for generating and detecting serial signal sequences.

The right-hand circuit in Figure 4.10 shows the corresponding decoder circuit. By

choosing either a wire or nor part for each of the parts B0, B1 and B2, any of the sequences

10B00B10B201 can be decoded.

81

4.3.9 Counters and registers

Figure 4.11 shows how 11 parts can be added to the flip-flop of Figure 4.6 to turn it into

a toggle flip-flop which can be used as the basis for an asynchronous counter. A 4-pulse

logic 1 at the T input will cause the flip-flop to change state.

Figure 4.11. A toggle flip-flop.

The faces that were used as Set and Reset inputs in Figure 4.6 are no longer available

in Figure 4.11. However, because we are working in three dimensions different faces of the

same parts can still serve as Set and Reset inputs (labelled S and R in Figure 4.11).

A convention that will be used for diagrams of three-dimensional structures later on

in this thesis is introduced in Figure 4.12. All previous diagrams have been of planar

circuits. Figure 4.12 shows a three dimensional circuit. The circuit can be thought of as

being a stack of layers. The dashed lines connecting a point on the layer at the top of the

figure with the layer beneath it shows how the layers are aligned with each other. The

FRONT -most layer is drawn at the top of the page, with successively lower layers being

1 unit further in the BACK direction.

Figure 4.12 shows a toggle flip-flop with additional logic added to derive the Set and

Reset signals from a Load signal (L) and a Value signal (V). V uses the static signal

representation and L uses the 4-pulse signal representation. A 4-pulse logic 1 at L will

cause the value present on V to be loaded into the flip-flop.

By having N toggle flip-flops and connecting a negative edge detector between the

output of one flip-flop and the toggle input of the next, we can make anN -bit asynchronous

82

Figure 4.12. A toggle flip-flop with Value V and Load L inputs.

counter that will increment in response to a 4-pulse signal clock on the Toggle input of the

first flip-flop. One disadvantage of this type of counter is that it is slow to count up. For

example, when an N -bit counter rolls over from 2N−1 to 0, a signal has to propagate from

one end of the counter to the other through every flip-flop and edge detection circuit. A

second disadvantage is that if we wish to make a loadable counter in which a value can be

loaded into the counter in a similar manner to the way in which a value can be loaded into

the flip-flop of Figure 4.12, then the negative edge detectors must somehow be inhibited

during the loading of a value into the counter. If this were not done then changes in

the output from any flip-flop from logic 1 to logic 0 could cause unwanted toggling of

subsequent flip-flops.

A well-known way of improving this situation is to incorporate logic into the counter

that precalculates which bits of the counter will need to toggle in response to the next

clock signal. A picture of such a counter in CBlocks3D is shown in Figure 4.13.

4.3.10 Memory

There are a number of different ways in which information storage structures may be

implemented using the part types available. One way to do this would be to use logic

gates and registers made from flip-flops to make memory circuits similar to those found

in electronic computers. If we define the storage density of a memory as the number of

83

Figure 4.13. An 8-bit loadable synchronous counter.

bits of information that can be stored per unit volume, then such a memory would have a

low density. The 3-part flip flop shown in Figure 4.7 can store a single bit, so even before

taking into account decoding and multiplexing logic, the storage density is only 0.33 bits

per unit volume.

An alternative memory architecture can be based around a signal loop. We have

already seen in section 4.3.4 that a pattern of signals will propagate endlessly around such

a loop, which has some similarity to the delay line stores that were used in early computer

memories. Not including circuitry required to extract signals from such a memory, the

density of this type of memory is 1 bit per unit volume.

An upper limit for the density of any conceivable storage structure can be given by

considering the number of bits that it takes to describe the state of a single cubic volume

of space.

The volume may be empty, or it may contain one of the three axially symmetric part

types (two of which, the wire and nor part types may be in one of two states) in any

one of 6 possible orientations, or it may contain one of the three axially asymmetric parts

in any one of 24 possible orientations. The total number of possible states for a unit

volume is therefore 1 + 30 + 72 = 103, requiring log2 91 = 6.7 bits to describe. A part

may be connected to neighbouring parts. There are at most 3 connections per part, each

84

requiring one bit to describe. Therefore the largest possible memory density is 9.7 bits

per unit volume. This analysis gives a slight overestimate for the upper limit because we

ignored the fact that no connection can be made to a volume containing no part, and that

in practice maintaining a wire or nor cell in an excited state independently of the state

of its neighbours would not be possible.

This upper limit is not a practically realistic figure. Although it is possible to determine

whether a particular part is connected to its neighbours by sliding it and seeing whether

it separates from its neighbours, it is not possible in general to tell which of its neighbours

it is connected to. Also, it is impractical to construct a storage system that contains nor

parts because if the active face of a nor part lies against the input of a rotate, fuse, unfuse

or slide part, then unwanted activity would occur. Additionally, if the memory system is

to form part of a system that is mobile, it is not wise to permit cells within it to be empty,

since particular patterns of information could result in a memory containing structures

surrounded by empty cells. These structures would end up out of place when the rest of

the memory moved.

Therefore, let us consider a memory in which information is encoded using the type

and orientation of parts in a solid volume of parts where we restrict ourselves to wire,

slide, fuse, unfuse and rotate parts. Here there are two axially symmetric parts and three

non-symmetric parts, so the total number of possible states for a cell is 12 + 72 = 84,

giving a memory density of 6.4 bits per unit volume.

Reading information from a particular address in a memory constructed in this way

would be a matter of extracting the parts corresponding to the memory address to be

read, then examining the parts to determine their type and orientation. A mechanism for

determining the type of a part is also needed by an SRPC and is described in section 5.4.

This mechanism could be modified to support determination of the orientation of a part

based on counting the number of passes through the mechanism of section 5.4 that are

required to identify the part.

Writing information into a memory of this type is a construction operation identical

to the operation performed by the orientation and constructing subsystems described in

Sections 5.6 and 5.7.

However, despite the high density of this type of memory and the fact that some of the

mechanisms required for reading and writing this type of memory are required elsewhere

in a constructing automaton, and could perhaps be shared to avoid duplication of identical

mechanisms, the mechanisms involved in reading, writing and copying this type of memory

are not nearly so straightforward as those for a memory based on signal loops.

85

4.4 Methodology and implementation

4.4.1 Simulating the CBlocks3D environment

The algorithm given in section 4.2.1 is written with the aim of giving as clear as possible

a description of the behaviour of the CBlocks3D environment. Although this algorithm

could be implemented exactly as it is written, the resulting implementation would not be

efficient because it does not take account of any repetition or redundancy in the system

being simulated.

A more efficient implementation that draws upon some of the techniques used by the

Hashlife algorithm published in [25] is described here. This implementation automatically

detects when structures within the system being simulated are repeated in space and

avoids simulating them twice. It also detects when a structure is in a state that has

already been simulated and avoids the need to simulate it again by storing the results of

previous simulation steps.

An octree data structure is used to represent the state of a CBlocks3D universe. In

this representation a cubic volume of space large enough to contain the system being

represented is subdivided into eight smaller cubes. Each smaller cube is subdivided in

a similar way down to the level of individual parts. This is implemented as a tree data

structure where each node of the tree corresponds to a cubic volume and contains an array

of eight pointers, each corresponding to a smaller cube. At any level within this tree any

two cubic volumes may be identical and can be represented by the same node. In this

way regions of empty space and repeated sub-structures can be represented efficiently. To

illustrate this, Figure 4.14 shows the two-dimensional version of this representation (known

as a quadtree). In this figure different coloured lines are used to represent pointers from

a node in one level to a node in a lower level. Red lines represent pointers to the top left

sub-square of a node, green lines represent pointers to the top right, blue to the bottom

left and black the bottom right.

The Hashlife algorithm is so named because a large hash table is used to keep a

collection of pointers to nodes which have already been used. When a new node is built

as the result of a simulation step it is looked up in the hash table to see whether it has

already been used elsewhere in the octree and also whether it has been used some time in

the past.

The major difference between the CBlocks3D environment and cellular automata is

that in CBlocks3D connected structures can move as one piece in a single time step. The

Hashlife algorithm requires that any spatial volume is affected only by nearby volumes,

86

Figure 4.14. A quadtree data structure.

so is well suited to simulating cellular automata but not the CBlocks3D environment.

To overcome this difficulty, simulation of CBlocks3D is split into two interleaved phases

called the stationary phase and the movement phase, each of which can be independently

simulated by the Hashlife algorithm. During the stationary phase the activity of all parts

except the slide part are simulated. The stationary phase runs until the point when a

True signal is applied to any slide part with a part against its active face. At this point

movement is about to occur and the simulation switches to the movement phase. During

the movement phase a cellular automaton model is used to propagate the effect of the

movement to all affected parts. At the end of the movement phase the affected parts

move and simulation switches back to the stationary phase.

The same octree representation is used regardless of which phase is being simulated.

The only difference between the two phases is the set of rules used to update the state of

parts.

To carry out a single simulation step the parts within a cubic volume of dimension

2n are used to compute a future state of a volume of dimension 2n−1 centred on the

original volume. Doing this throughout the octree would leave gaps between volumes in

the computed result. To overcome this several overlapping octrees are constructed at the

time that a calculation at a particular level in the octree needs to be carried out so that

the results from each can be combined in such a way that there are no gaps. Whenever

87

a calculation is carried out on an octree node, the result of the calculation is stored in a

special result pointer within the node so that if the same calculation is needed in future

it does not need to be carried out again, but can be retrieved from this pointer.

In this implementation of the Hashlife algorithm the state of the environment 8 time

units ahead is computed, unless it is detected that a transition to a different phase is

needed at some time within those 8 time units, in which case simulation is backtracked

and then stepped forward 1 unit at a time.

A program listing is given in appendix A and included on the CD attached to this

thesis.

This implementation allows us to simulate the 225 million iterations that are required

for the SRPC described in Chapter 5 to construct a replica machine in an initial environ-

ment containing enough parts to construct a replica. The simulation was run in a little

over 10 days on an Intel Core 2 Duo processor running at 2.6 GHz with 4Gb of RAM.

4.4.2 Describing structures

To describe complex three dimensional structures made from connected substructures a

suite of C++ classes is used. In the same way that the part-level diagrams used in this

chapter and Chapter 5 are drawn layer by layer, these classes allow small structures to be

described layer by layer. For example the following listing shows how a structure can be

built up layer by layer from SOUTH to NORTH. Outputs of parts within these layers

can be set and then terminals added for connecting this structure to other structures. For

historical reasons, the three letter abbreviation del is used to specify a wire part.

void SyncStageN(CBasicObject &bo)

{

bo.Layer();

bo.String("{nul {n e}} {nul {n e}}");

bo.String("{nul {n e}} {nul {n e}}");

bo.String("{nor {b e}} {nul {n e}}");

bo.String("{del {w n}} {del {w n}}");

bo.Layer();

bo.String("{nul {n e}} {nul {n e}}");

bo.String("{nul {n e}} {nul {n e}}");

bo.String("{del {s e}} {nul {n e}}");

bo.String("{nul {n e}} {nul {n e}}");

bo.Layer();

bo.String("{del {f e}} {nul {n e}}");

88

bo.String("{nor {e f}} {nor {f e}}");

bo.String("{del {e f}} {del {f n}}");

bo.String("{nul {n e}} {nul {n e}}");

bo.SetOutputs(0,2,0,true);

bo.SetOutputs(0,2,2,true);

bo.SetOutputs(1,2,1,true);

bo.SetOutputs(1,2,2,true);

bo.SetOutputs(0,1,2,true);

bo.SetOutputs(0,0,3,true);

bo.SetOutputs(1,0,3,true);

bo.Terminal("out",0,0,2,false,back);

bo.Terminal("count-in",1,0,3,true,east);

bo.Terminal("count-out",0,0,3,false,west);

}

The next listing shows how more complex structures can then be put together from

simpler structures.

void CounterN(CCompoundObject &co, unsigned n)

{

CBasicObject *ff;

CBasicObject *ss;

ff = new CBasicObject [n];

ss = new CBasicObject [n];

{for(unsigned i = 0; i<n; i++)

{

SmallToggleV2(ff[i]);

if (i)

SyncStageN(ss[i]);

else

SyncStage0(ss[0]);

ff[i].Rotate(back);

ff[i].Rotate(west);

89

}}

co.AddObject(&ff[0],"ff0",0,0,0);

co.AddObject(&ss[0],"ss0","out","ff0.t");

{for(unsigned i = 1; i<n; i++)

{

char tmp[16],tmp2[16];

sprintf(tmp,"ss%d",i);

sprintf(tmp2,"ss%d.count-in",i-1);

co.AddObject(&ss[i],tmp,"count-out",tmp2);

sprintf(tmp,"ff%d",i);

sprintf(tmp2,"ss%d.out",i);

co.AddObject(&ff[i],tmp,"t",tmp2);

}}

}

After a structure has been specified it can be written to a file. The file format used

contains not only a description of the parts within a structure, but also the names that

were given to substructures when the structure was specified. A separate file containing

the names of all terminals within the structure can also be generated so that test stimuli

can be applied to some terminals and outputs from others monitored.

4.4.3 Visualisation and debugging

Visualisation of three dimensional structures is invaluable for working out how to fit them

together and for helping to uncover design errors in large complex structures.

A utility was written using the OpenGL graphics library to render structures and

to help with debugging. The utility allows users to navigate around (or even inside) a

structure and view it from any location. Values of inputs to a structure can be set and a

structure can be simulated one step at a time. Outputs from a structure can be sampled

and written to a file.

The utility allows the user to specify a project file with a .prj file extension which

contains a list of other files to load. The following list shows what each type of file is used

for:

90

.grd Specifies the structure to be loaded.

.trm Lists terminals within the structure. These correspond to terminals created using

the Terminal function when specifying a structure.

.sti Lists stimulus inputs and the terminals that they should be applied to.

.uvw Contains locations and orientations of views of the structure.

.mon Lists terminals to monitor as simulation progresses. Allows a ‘trigger’ terminal to

be specified, so that values from a collection of terminals will only be output when

the value of the trigger terminal is True.

The CD attached to this thesis contains examples of each type of file, along with a

description of the file formats used.

4.5 Summary

This chapter has described a 3D kinematic environment that supports 6 simple types of

part and has shown how parts can be put together to make simple circuits and mechanisms.

The next chapter shows how these mechanisms and others can be used to build subsys-

tems that can then be put together to make a self-replicating programmable constructing

machine.

Chapter 5

A Self-Replicating Programmable

Constructor in the CBlocks3D

environment

5.1 Design considerations

Figure 5.1 shows a black-box diagram of a programmable constructing machine in the

CBlocks3D environment. The machine has an input orifice that receives parts from the

machine’s environment. The machine outputs a construction which is produced from an

internal description or program without any external signals being fed into the machine.

Figure 5.1. Black box diagram of a programmable constructing machine.

We shall regard the operation of a machine constructing another object as a task that

includes the task of obtaining the parts needed to construct that object from the machine’s

environment.

By considering what happens to an individual part passing through the black box from

the input orifice to the object being constructed, we can deduce what some of the essential

92

subsystems are that the constructing machine must contain, and also what the possible

variations are in how the subsystems can be arranged. We shall also find that there are

some subsystems that are not essential but which if included will decrease the time taken

for the machine to carry out a construction operation.

The first simplifying assumption that we will make (and which is implied in Figure

5.1) is to assume that the machine’s construction operations are serial. This means that

there is a single location at which construction occurs one part at a time. We shall also

assume that the machine’s processing of input parts from its environment occurs serially

with one part being processed before another part is obtained from the environment.

5.1.1 Managing parts

The construction output of the machine outputs a particular series of parts with each part

in a particular orientation. At its input the machine receives parts in an unknown order

with each part in an unknown orientation. There are several different ways of ensuring

that the correct part in the correct orientation is available when the machine needs to

output it.

One method is to discard all parts arriving at the input until the correct part in the

correct orientation arrives. This method assumes that both the type and orientation of

input parts are distributed in a way that guarantees that the correct part in the correct

orientation will eventually arrive.

Another method is to discard all parts until a part of the correct type in any orientation

arrives and then alter the orientation of that part if necessary. This method makes no

assumption about the distribution of the orientation of input parts.

A third method is to identify and store all parts arriving at the input, only discarding

parts if the storage area is full. When the construction output requires a part it requests

the part from the store. Parts could be stored in any orientation and then reorientated to

the desired orientation when required. Alternatively all parts could be stored in the same

orientation and then reorientated to the desired orientation when required.

An approximate analysis is carried out below to show how the first and the third

methods differ in the time required to collect the parts needed for a construction. This

analysis does not take into account the influence that the chosen method has on the size

of the system.

Let us assume that a machine M is constructing a machine N . Let CN (t, o) be a count

of the number of times that a part of type t and orientation o occurs in machine N .

Let PN (t) =
∑

oCN (t, o) be the number of parts of type t in machine N .

93

Let FM (t, o) be the probability that when M encounters a part in its environment, the

part is of type t and orientation o.

Let TFind be the mean length of time between M beginning to search for a part in its

environment and finding any part.

For the first method described above the expected length of time that machine M

spends gathering parts to construct machine N is given by

∑
t,o

TFind · CN (t, o)

FM (t, o)
(5.1)

For the third method described above let Hp be the capacity of the storage area for

part type p. Let q denote the most frequently used part. We will assume that storage

areas will only be refilled when the storage area for the most frequently used part is empty.

The analysis below also assumes that parts are distributed uniformly in both the

environment and the machine N being constructed. We further assume that no wastage

ever occurs due to the storage area for a part being full when the part needs to be stored.

The smaller the storage area size the less valid these assumptions are.

The expected amount of free space in the storage area for part t at the time that the

storage area for q is empty is given by

PN (t)

PN (q)
·Hq (5.2)

For the sake of simplifying this analysis, we will assume that the size of the storage

area for each part t is at least large enough to hold this number of parts.

The expected length of time needed to obtain k parts of type p from the environment

is given by

k · TFind∑
o FM (p, o)

(5.3)

But because no part of any type is discarded until the hopper for that part type is

full, the length of time needed to fill the empty space in all storage areas is the maximum

length of time needed to fill any single storage area:

Max
t

PN (t) ·Hq · TFind

PN (q) ·
∑

o FM (t, o)
(5.4)

The expected number of times that storage areas will need to be filled when construct-

ing N is given by

94

PN (q)

Hq
(5.5)

Multiplying this by Equation 5.4 gives the expected length of time that M spends

gathering parts to construct N .

Max
t

PN (t) ·Hq · TFind

PN (q) ·
∑

o FM (t, o)

PN (q)

Hq
(5.6)

This can be simplified to

Max
t

PN (t) · TFind∑
o FM (t, o)

(5.7)

To express this another way: of the six part types available there is one part type

for which the ratio of the number of times that it occurs in N and the probability of its

occurrence in the environment is larger than the others. The total time that M spends

collecting all parts needed for N is no longer than the time spent collecting this type of

part.

This confirms what seems to be intuitive: storing parts for later use is in general the

most efficient way to collect parts. This method also has another great advantage. If the

machine had to collect another part whenever it placed a single part into the machine

being constructed, it would have to make sure that the movement required to collect the

next part did not interfere with the construction being carried out. One way of doing this

is to make sure that the construction is always in a state where it can be attached to the

parent machine and moved along with the parent when collecting parts. For this to be

possible there can be no disconnected subsystems during construction. Another method

is to make the part collection mechanism moveable separately from the construction part

of the machine. For example the collection mechanism could be placed onto a boom that

could be extended into the environment to seek out parts.

By storing parts for later use this problem is removed. The machine can operate in

two phases. In one phase it carries out construction operations. Then when one of the

storage areas has run out of parts the machine can attach itself to the construction and

beginning collecting more parts until all of the storage areas are full. When to make

the transition between the construction phase and the collection phase is something that

will be known by the programmer. The programmer knows the capacity of the storage

areas and therefore knows when all parts in one storage area have been used up and

can issue an instruction telling the machine to begin collecting more parts. During the

95

construction phase the machine is free to construct in whatever manner it likes without

regard for whether it is operating on disconnected subsystems. Only when the time comes

to collect more parts does the machine need to ensure that all parts of the construction

are connected and will not fall apart when moved.

There are several possible methods of arranging the part storage area. To avoid having

unwanted interactions between parts it is reasonable to use a separate storage area for

each part type. It is also reasonable to make sure that the orientation of every part within

the storage area is identical. By organising the storage areas in this way we make sure

that whenever a part is requested from the storage area both the type and orientation of

the part are known.

5.1.2 Controlling the machine

Sections 2.2 and 2.3.1 describe two distinct architectures for the control unit of a self-

replicating programmable constructor (SRPC). We can use either Thatcher’s architecture

and implement the control unit as a universal computer, in which case one single control

unit would be used both for directing the construction operations as well as for copying

the contents of the parent memory into the child machine. Alternatively we can use

von Neumann’s architecture in which the control unit simply interprets a sequence of

instructions. In this instance a separate mechanism is employed to copy the contents of

the parent memory into the child machine.

There are two considerations that lead to a preference for the second option. The

primary consideration is the ease with which the contents of a memory based on signal

loops can be copied into another memory. This is done by simply holding one memory

against another for the length of time that it takes for signals to propagate around the

loop, as described in section 4.3.4.

The second consideration is that, although the system described in this chapter is a

proof-of-principle rather than a design for a practical machine, testing individual subsys-

tems and validating the overall design is an important part of the proof. Being able to

simulate the design in its entirety and show that the machine does what it is expected

to do is a convincing validation. For this reason, speed of operation must be taken into

account when designing the architecture of the control unit. A universal computer can be

expected to require more parts to construct than a simpler control unit and might also

require a longer time to execute each instruction.

In common with the design of Nobili [46], the design given in this chapter uses a method

of reducing the amount of redundancy in the instruction sequence used for directing the

96

machine (but not the same method used by Nobili [46]). An explanation of how this was

done is given in section 5.10 where the instruction encoding scheme is discussed.

5.2 Overview

Figure 5.2 shows a top-level schematic of the SRPC. The schematic shows how the system

can be divided into the subsystem that manages the collection, storage, transport and

positioning of parts and the subsystem that controls the whole machine.

Figure 5.2. Top-level schematic of the SRPC.

Figure 5.3 shows a graphical representation of the SRPC after it has almost finished

constructing a child machine. Several of the subsystems in the parent machine are labelled.

Each module of the system is described in a separate section in the following part of

this chapter. Descriptions of some of the signal paths and logic that connect modules

are omitted. The full specification of the system along with software for simulating and

rendering the system are available on the CD attached to this thesis.

Three different types of diagram are used in the following sections.

97

Figure 5.3. Graphical representation of the SRPC.

Schematic diagrams are somewhat like digital electronic circuit diagrams and fulfill

a similar purpose. Generally these show modules at a level of abstraction sufficient for

understanding how a mechanism works without showing the individual component parts

of the mechanism. Schematic diagrams are not given for simple mechanisms.

Part-level diagrams show how a mechanism is implemented. The representation used

for parts is that described in Table 4.2 on page 69. Most mechanisms have a three

dimensional structure and so use the convention for displaying multi-layered structures

introduced in Figure 4.12 on page 82. Unless otherwise specified all neighbouring parts in

any structure are connected. The Boolean outputs from individual parts are not shown

in part-level diagrams. Showing individual outputs was found to be detrimental to the

utility of part level diagrams.

Graphical representations of most mechanisms are given. Although a 3D graphical

representation projected onto a 2D page cannot show all of the parts within a mechanism,

it is nevertheless useful to have a graphical representation. It will help the reader to

recognise mechanisms when using the simulation and rendering software, and it will also

assist with understanding the part-level diagrams.

Part-level diagrams and graphical representations contain an indicator showing how

the figure is oriented with respect to the NORTH, WEST and BACK axes.

98

5.3 Collecting parts

When the machine needs to replenish parts in its storage area it moves through its envi-

ronment along a straight path from EAST to WEST .

It has a single part-input orifice. Whenever the machine moves WEST by one unit a

part from the environment may or may not have entered the orifice.

Figure 5.4 shows a mechanism that is able to detect when a part has entered the ma-

chine and Figure 5.5 shows a graphical representation of the mechanism. This mechanism

is called the detect mechanism.

The detect mechanism has two signal inputs. One is the part-request input into which a

logic 1 pulse signal is sent when the detect mechanism should begin looking for a part. The

other input is the enable/disable input. This input uses the static signal representation.

When this input is set to logic 1 it prevents the part-request input from having any effect

and also stops any current activity of the detect mechanism. When the enable/disable

input transitions from logic 1 to logic 0, it has the effect of both enabling the mechanism

and also injecting a logic 1 pulse signal into the part request input.

The operation of the detect mechanism is as follows. Slide part A causes the whole

mechanism (and the whole machine, since the mechanism is connected to the rest of the

machine) to move WEST one unit. Unfuse parts B and C disconnect structures D and

E from the rest of the mechanism. Slide part F moves structure D NORTH by one unit.

If there is a part at G then D will push this part which will in turn push structure E

NORTH by one unit.

After slide parts H and I have moved D and E back to their original positions, fuse

parts J and K will reconnect D and E to the rest of the mechanism.

Only if E moved NORTH will a signal derived from part L emerge from the part

present output. At the same time, the detected part will emerge at the part output

location.

If D moved NORTH but E did not then a signal derived from part M will travel to

wire N and repeat the operation.

5.4 Sorting Parts

A description of a mechanism for sorting parts in the CBlocks3D environment was pub-

lished in reference [64]. This section elaborates on that description.

Figure 5.6 is a schematic diagram of the sorter mechanism which also shows how it is

connected to the detect mechanism. Figure 5.7 shows a graphical representation of both

99

Figure 5.4. The detect mechanism.

100

Figure 5.5. A graphical representation of the detect mechanism.

mechanisms.

A part enters the sorting mechanism from the part-output location of the detect mech-

anism. A part is then fed in turn to mechanisms called filters. Each filter can recognise

a particular type of part. The slide, rotate, nor and wire filters can recognise parts in

any orientation in which the primary axis of a part points SOUTH. The fuse and unfuse

filters can recognise parts in the SF orientation.

Figure 5.6. A schematic diagram of the sorter mechanism connected to the detect mechanism.

The following sections describe the modules of the sorter mechanism.

5.4.1 The orientation cycler

If a part is recognised by one of the six filters it will be diverted to a storage area con-

nected to the SOUTH of that filter. Any part not in a recognisable orientation will pass

through all six filters without being diverted to a storage area. The part will then enter

a mechanism called the orientation cycler that will alter the orientation of the part after

which the part will be fed back to the first filter.

The purpose of the orientation cycler is to guarantee that any part in the sorter

will eventually be recognised by cycling the part through all 24 possible orientations if

101

Figure 5.7. A graphical representation of the sorter connected to the detect mechanism.

necessary. The orientation cycler contains two rotate parts arranged as in Figure 5.8.

Figure 5.8. The arrangement of rotate parts in the orientation cycler.

If a part were to remain stationary at position P then that part could be cycled through

all 24 orientations by applying at every time step a signal either to rotate part A or to rotate

part B. Suppose that we have a sequence of Boolean values Q of length m that specifies at

each time step whether a signal should be applied to A or to B. In the orientation cycler

parts do not remain stationary at P but instead pass through several times, undergoing

one change in orientation every pass. It takes Tsorter time units for an unrecognised part

to traverse the sorter once. Therefore a part will enter the orientation cycler every Tsorter

time units. In order to apply in order the sequence of rotations specified by Q to the part,

we must arrange that during the nth passage of the part through the orientation cycler

the rotate part specified by Q[(n − 1) mod m] is active. One way to achieve this is to

design a mechanism that advances through the sequence Q by one step every time a part

102

passes through the orientation cycler, looping back to the beginning when the end of Q

is reached. Given that Tsorter is constant, a simple method of doing this is to use a signal

loop containing a sequence Q′ derived from Q as follows.

If the first passage of a part through the orientation cycler happens at time t0 then the

nth passage happens at time t0 + nTsorter. Provided that Tsorter and m are coprime, then

(t0+nTsorter) mod m will take on all values 0 to m−1 in some order as n increments from

from 0 to m − 1. We can arrange a sequence Q′[(t0 + nTsorter) mod m] = Q[n mod m]

and then use Q′ to activate either A or B as a part passes through the orientation cycler.

Q′ is a sequence of Boolean values which will, when fed to the orientation cycler ensure

that a part passing through the orientation cycler many times will eventually cycle through

all possible orientations. Let us call any sequence with this property a cycling sequence.

Rather than have a signal loop dedicated to providing the cycling sequence Q′ to the

orientation cycler we can instead make use of the fact that if we choose any sequence

of length l at random then the probability that it is a cycling sequence increases as l

increases.

This probability for various values of l was calculated by sampling 1,000,000 random

sequences for each of various lengths l. The results are shown in Table 5.1.

Sequence length l Cycling sequence probability (2 d.p.)

25 0.00
50 0.01
75 0.49
100 0.78
125 0.92
150 0.97
175 0.99
200 1.00
225 1.00
250 1.00

Table 5.1. Probability that a randomly chosen sequence of length l is a cycling sequence.

Table 5.1 shows that for sequences of length 200 or more it is overwhelmingly likely

that a randomly chosen sequence will be a cycling sequence.

The memory (described in section 5.8) contains a collection of 256-bit signal loops,

and the layout of subsystems in the machine is such that running a signal path from the

memory to the orientation cycler is very straightforward. The 256-bit sequence in the

memory signal loop that is nearest to the orientation cycler is a cycling sequence.

Figure 5.9 shows the orientation cycler. A part p enters the mechanism at A at the

103

same time that a signal enters the mechanism at C. Input B is the input for the cycling

sequence. A signal derived from C and B is used to activate rotate part D. A signal

derived from C and not B is used to activate rotate part E. As p passes beneath D (and

to the west of E) one of these rotate parts is active and rotates p. After this p emerges

from the mechanism at F .

5.4.2 Nor filter and wire filter

Figure 5.10 shows the nor filter. This is the simplest of the six filters. A single part path

leads into the filter, and two part paths lead out. The filter is capable of detecting a nor

with its primary axis pointing SOUTH (see axes in Figure 5.10). A part p travels into

the filter along path A passing above the input to part B as it does so, and arrives at

point C. Since a southward pointing nor part is the only possible part that can cause a

signal to enter part B as it passes above it, a signal taken from B to slide part D will

divert part p if and only if p is a southward pointing nor part. If p is any other part or is

a nor part in any other orientation then it will exit the filter when part E slides it out of

the filter (after having waited at C for long enough for any possible diversion to happen).

A wire filter can be constructed in a very similar way to the nor filter except that in

this case a signal must be fed into the part being tested so that any possible output from

it can be detected. Since a southward pointing wire part is the only part that will output

a signal one time unit after receiving a signal on its input, a part from which such a signal

is detected can be diverted and identified as a southward pointing wire.

5.4.3 Rotate filter

Figure 5.11 shows the rotate filter. A part p is fed into the filter at A at the same time

that a signal is fed into the filter at B. p is transported to location C. As p passes beneath

part D a signal is applied to the northward face of p by part D. If and only if p is a rotate

part pointing southward will part E be rotated so as to allow a signal derived from B to

pass through E, and ultimately to activate F and divert p to H. Otherwise p will emerge

from the filter as it moves EAST from location C.

5.4.4 Slide filter

The slide filter is the only filter that can recognise a part in a number of functionally

distinct orientations. It can recognise a slide part in any of the orientations in which its

primary axis points SOUTH regardless of the orientation of the part’s secondary axis.

104

Figure 5.9. The orientation cycler.

105

Figure 5.10. The nor filter.

106

Figure 5.11. The rotate filter.

107

This is necessary because all of the filters except the nor filter work by applying a signal

to the NORTH face of a part. The slide filter is the first filter in the series of filters

that a part passes through. If any southward pointing slide part were to enter any of the

other filters, the result would be that when a signal was applied to the NORTH face of

the slide part then the part immediately beneath the slide part and any parts connected

to it would be moved. This would lead to the whole machine moving in an unpredictable

way.

Figure 5.12 shows the slide filter. A part p enters the filter at A and moves to location

B where a signal is applied to the NORTH face of the part by part C. If p is a slide

part pointing southward, structure D will move EAST,WEST,BACK or FRONT and

immediately be moved back to its original position by the nearby slide parts. This will

cause nor part E to inject a signal into mechanism H at a point that will cause p (which

has by now moved to location G) to adopt the SF orientation regardless of its original

orientation. The movement of D will also cause a pulse to emerge from nor part F which

will then cause p to be diverted to emerge at I. If p is not recognised then it will emerge

at J .

5.4.5 Fuse filter and unfuse filter

Figure 5.13 shows the fuse filter. A part p is fed into the filter at A at the same time that

a signal enters at B. p is transported to location C. A signal derived from B is applied

to unfuse parts E so that there is no connection at joints F . After this a signal derived

from B is applied to the NORTH face of p by part D. If and only if p is a fuse part in

an SF orientation will the frontmost of the joints F become connected. Slide parts I will

slide the structure beneath them back and forth, as a result of which the signal output

by nor part G will arrive at H, but only if p was a SF orientated fuse part. A signal

derived from H can then be used to divert p along J , otherwise p will exit from the filter

at L. Fuse parts K ensure that joints F are connected again once the filter has finished

the test on p.

Figure 5.14 shows the unfuse filter. Its operation is the same as the fuse filter, except

for the following: Unfuse part A disconnects the joint B. If the part being tested is a SF

orientated unfuse part then joint C will be disconnected, causing a signal to arrive at D

when slide parts E are activated.

108

Figure 5.12. The slide filter.

109

Figure 5.13. The fuse filter.

110

Figure 5.14. The unfuse filter.

111

5.5 Part storage and dispensing

There is a separate storage mechanism for each type of part. Each storage mechanism is

based around a two dimensional rectangle of parts. Figure 5.15 is a schematic diagram

of a single storage mechanism. Figure 5.16 shows a part-level diagram of the mechanism

and Figure 5.17 shows a graphical representation of the mechanism.

Parts shaded in the same colour in Figure 5.16 form connected structures. The con-

nectivity between these structures is as follows.

The storage adder mechanism is not connected to any other mechanism except the

rectangle to which it is connected via the WEST face of the wire part SOUTH of unfuse

part G.

The storage dispenser mechanism is not connected to any other mechanism except the

rectangle to which it is connected via the EAST face of the southmost of unfuse parts W.

The part path AF and all parts connected to it are not connected to any other struc-

ture. This structure is held in place by surrounding structures.

Figure 5.15. A schematic diagram of the storage mechanism for a single type of part.

When a part is recognised by the sorter it is passed on to a storage mechanism and

added to the FRONT edge of the rectangle. A part-level diagram of the mechanism for

adding parts onto the rectangle is shown towards the bottom right hand corner of Figure

5.16. This mechanism will be referred to as the storage adder.

A part p enters the storage mechanism at A at the same time that a signal enters at

B. Part C in the storage adder prevents p from moving SOUTH past slide part D. Slide

part D moves p into the next available empty location on the rectangle and then fuse

parts E connect p to the rectangle.

A signal derived from B enters the storage adder through part F . This causes unfuse

112

partG to disconnect the storage adder from the rectangle. The adder then movesNORTH

and reconnects to the rectangle.

If the storage adder reaches its northmost location then a signal from H enters the

mechanism through part I and causes the storage adder to move 12 units SOUTH. Then

a signal enters J causing the rectangle to be temporarily disconnected by unfuse part K,

moved BACK 1 unit by slide part L and then reconnected by fuse part M . This creates

space for a new column of parts.

If as a consequence of moving the rectangle BACK and creating space for a new

column of parts the storage mechanism becomes full, then a signal from nor part N will

enter part O and propagate to part P . With the storage adder in its SOUTH most

location, a signal at P will cause the output of C to be false and will also cause slide part

D to be inactive with the result that any part p coming into the full storage mechanism

from A will pass all the way SOUTH to slide part Q, which will then move p out of the

storage mechanism along path R and return it to the environment.

113

Figure 5.16. The storage mechanism for slide parts.

114

Figure 5.17. A graphical representation of the storage mechanism.

115

When the machine’s control unit requests a part from a storage mechanism the part is

retrieved from the BACK edge of the rectangle. The mechanism for doing this is called

the storage dispenser and includes a serial decoder which enables each storage dispenser

to be activated by a different sequence of signals. A part-level diagram for the storage

dispenser is shown towards the top right hand corner of Figure 5.16.

A serial encoded signal enters the storage mechanism at S and enters the storage

dispenser through wire part T. U is a decoder that decodes the serially encoded signal

and causes the storage dispenser to move NORTH by activating slide part V . Unfuse

parts W then disconnect a part in the rectangle and slide part W causes this part to exit

the mechanism along part-path AF .

If the storage dispenser reaches its northmost position then the column from which

it has been dispensing parts is empty. A signal from Y enters Z which results in slide

part AA sliding the storage dispenser 12 units SOUTH. As the storage dispenser moves

SOUTH a signal from AB enters signal path AC and is passed onto AD which then

causes AE to move the storage dispenser 1 unit in the FRONT direction, ready to access

the next column of parts.

Table 5.2 shows the serial encoding used for dispensing each type of part. In this table

the rightmost bit is the leading bit as the sequence propagates along a path.

Part type Encoding

Slide 100000001
Rotate 100010001
Nor 101010001
Wire 101000001
Fuse 100000101
UnFuse 100010101

Table 5.2. Serial encoding used for dispensing parts.

The maximum size of a storage mechanism rectangle is 12 × 17 = 204 parts. There

is a limit on how close the storage adder and storage dispenser can be can be without

interfering with each other’s operation. For this reason the effective capacity of a storage

mechanism is 180 parts. This means that any construction operation that the machine

performs between one round of part collection and the next must not use more than 180

parts of any single type.

116

5.6 Orientation

The orientation mechanism takes as its input a part in the SF orientation and then rotates

the part into a specified orientation. Since there are 24 possible orientations a 5 bit word

is required to specify which orientation a part should be in.

Let us assume we have a 5 bit word stored in a register. The problem of designing

the orientation mechanism then becomes: how can these 5 bits from the register be fed

to some collection of wire, nor and rotate parts operating on a target part in such a way

that different words will result in different orientations of the target part and that there

is at least one word resulting in each possible orientation. It does not matter to us which

word results in which orientation.

The simplest possible arrangement of this type is to have a part path running, say,

from FRONT to BACK and then connect each bit from the register to a rotate part that

will operate on parts passing along this path. Clearly some of these rotate parts will need

to rotate about different axes from others in order to span the whole range of possible

rotations. We will also need to ensure that no attempt is made to move a part at the

same time that it is being rotated.

Figure 5.18 shows a mechanism of this type that was found to exhibit the correct

behaviour. Figure 5.19 shows a schematic diagram of this mechanism. In Figure 5.19,

dashed lines represent signal paths using the pulse signal representation and solid lines

represent signal paths using the static signal representation. Boxes containing the letter

D represent delays of 2 time units. Figure 5.20 shows a graphical representation of the

orientation mechanism.

For each possible value of the orientation register Table 5.3 shows what the resulting

orientation is for parts emerging from part-output of the orientation mechanism.

5.7 Construction arm

Section 4.3.7 describes how a path for transporting parts can be made in such a way that

a part can be stopped at any location along the path. By using three such paths set

orthogonally and joined so that each path can slide back and forth along one axis, we can

make a mechanism that can move a part to a particular location in a cubic region. We

call this mechanism the construction arm.

At each joint in the construction arm decoders similar to those described in section

4.3.8 are used to decode a sequence fed into a signal path joined to and running along

with the part paths. The outputs of these decoders lead to slide parts which cause the

117

Figure 5.18. The orientation mechanism.

118

Figure 5.19. A schematic diagram of the orientation mechanism.

Figure 5.20. A graphical representation of the orientation mechanism.

different segments of the construction arm to move back and forth along one axis. Table

5.4 shows the encoding used for each movement of the construction arm.

Figure 5.21 shows a single joint between two signal paths in the construction arm.

Figure 5.22 shows a schematic diagram of the construction arm. Figure 5.23 shows a

graphical representation.

The operation of the joint shown in Figure 5.21 is as follows. Nor part A prevents

parts from moving further along the path than the position of the joint so that parts can

be passed onto the next signal path at right angles to this one.

119

Value Orientation Value Orientation

00000 EB 10000 EF
00001 EN 10001 ES
00010 BW 10010 BE
00011 NW 10011 NE
00100 SB 10100 SF
00101 BN 10101 BS
00110 BN 10110 BS
00111 NF 10111 NB
01000 WF 11000 WB
01001 WS 11001 WN
01010 FE 11010 FW
01011 SE 11011 SW
01100 NF 11100 NB
01101 FS 11101 FN
01110 FS 11110 FN
01111 SB 11111 SF

Table 5.3. Orientation of parts at part-output for different values of the orientation register.

Direction Encoding

NORTH 100000001
SOUTH 100010001
EAST 101010001
WEST 101000001
BACK 100000101
FRONT 100010101

Table 5.4. Serial encoding used for construction arm movements.

Signals from the signal path that runs along with the part path enter the joint at B.

Output C is used to pass this signal onto the next signal path. Starting at part D is a

decoder that is used to decode two sequences that differ by one bit (see Table 5.4). If

either sequence is decoded then the joint is disconnected from the part path by unfuse

part E. Depending on which of the two sequences was decoded one of the slide parts F

causes the joint to move in one direction or the other. After this fuse part G reconnects

the joint to the part path.

120

Figure 5.21. A single joint between two paths in the construction arm.

121

Figure 5.22. A schematic diagram of the construction arm.

122

Figure 5.23. A graphical representation of the construction arm.

123

At the very end of the construction arm is a mechanism called the construction head,

shown in Figure 5.24. This contains decoders and slide parts that fulfill the same function

as in a joint. The fuse parts labelled F ensure that newly placed parts are connected to

the structure being constructed. The construction head also contains mechanisms that

can be used to attach and detach the construction head to and from the construction. One

attachment/detachment mechanism lies on the EAST side of the construction head and

another lies on the WEST side. These are used to make sure that when the machine is

collecting parts to fill the storage mechanisms, the construction is not left behind. They are

also used occasionally during construction to pull the construction in a particular direction

in order to operate on a different part of the construction. The signals used to activate

the attachment and detachment mechanisms are taken from the same decoder that is

used to decode NORTH and SOUTH movements of the construction head respectively.

This means that in order to be attached to a construction the construction head must

be positioned so that either of the attachment/detachment mechanisms is against the

construction and then move the construction head NORTH. Immediately after moving

NORTH the construction head will be attached to the construction. To detach the

construction head from the construction it must be moved SOUTH. Immediately after

moving SOUTH (the construction will also move SOUTH because it is attached) the

construction head will be detached from the construction.

5.8 Memory

Having designed the construction arm, part dispenser and orientation mechanism, it is

now possible to devise an instruction set. The arrangement of the memory and the design

of the instruction set go hand-in-hand: each memory word must be large enough to

contain an instruction. The arrangement of the memory is presented in this section and

the instruction set architecture is presented in section 5.10.

Possible methods of implementing a memory in CBlocks3D were described in section

4.3.10. We choose the method of using gated signal loops as described in section 4.3.4

because it simplifies the problem of copying the contents of one memory unit to another

when the contents of the parent machine’s memory need to be copied into the child

machine. The memory units simply need to be held in contact for the length of time that

it takes a signal to propagate around the loop.

The fact that it is possible to copy the memory contents from parent to child in this

simple way is a great advantage. In effect this process is the equivalent of the Tape

124

Figure 5.24. The construction head.

125

Copying Logic in von Neumann’s architecture (see Figure 2.6).

The signal loop used as the basis for the machine’s memory is a 256-part loop that

is folded up so as to fit in a rectangular area 8 units FRONT to BACK and 32 units

SOUTH to NORTH. Figure 5.25 shows how each memory loop is arranged.

Figure 5.25. The arrangement of the memory signal loop.

Each 256-word memory module is made using 6 gated signal loops placed side-by-side

from WEST to EAST . The machine contains 32 memory modules giving a total of 8,192

6-bit words or 49,142 bits. Each module has a 6-bit wide AND gate connected to its

output. Figure 5.26 shows this gating mechanism. The output from the AND gates from

each module are ORed together to produce a single output for the whole memory unit.

By activating one 6-bit AND gate the contents of a single memory module can be made

to appear on the output of the memory unit.

As can be seen from the diagram of the 6-bit AND gate mechanism in Figure 5.26

the output from each memory loop is offset 1 bit frontward from that of the previous

loop. Also each memory module is 6 units further along the ORing mechanism than the

previous module. The contents of the memory therefore have to be arranged in such a

way as to compensate for these differences in offset so that the correct word is available

at the output at the correct time. Let us take the signal loop that produces output bit

0 of the first memory module as a reference loop. Then the contents of signal loop b of

module m have to be offset by b+ 6m units with respect to the reference loop.

The reason for offsetting the output of each signal loop in a given memory module by 1

bit is to simplify the structure of the instruction decoders (see section 5.10). The outputs

from each loop are combined through various gates in order to decode instructions, and

126

Figure 5.26. The 6-bit AND-gate connected to each memory module.

we must ensure that any cell which combines signals originating from particular memory

outputs is equidistant from each output. This can be done in a compact area if the outputs

are arranged diagonally.

5.9 Address decoder

The memory consists of 32 modules each containing 256 words. The output of each

memory module passes through a 6-bit AND gate which can be used to select which of

the 32 modules is active. The outputs of these AND gates are then ORed together so that

there is a single output for the whole memory unit.

The address decoder has 5 single-bit inputs. Based on the value of these inputs it

produces a true signal on one of 32 outputs and a false signal on the other 31 outputs.

It would be possible to design the address decoder using only wire and nor parts,

but the length of time that it would take for the effect of the inputs to propagate to the

output of the 32nd address decoder would be at least 192 time units. It would take at

least a further 192 time units for the output of the 32nd memory module to reach the

memory output. This is longer than the minimum possible time that could occur between

successive outputs from the comparator that compares the lower 8 bits of the program

127

counter with the memory address counter. Therefore the correct memory word would not

have arrived at the output of the memory unit by the time that it was required.

A way of avoiding the propagation delays associated with using wire and nor parts is

to make use of the kinematic behaviour of the CBlocks3D environment and use moveable

rods to propagate signals over long distances. For the address decoder this is particularly

straightforward. It also requires fewer parts and has a simpler structure than an address

decoder made from wire and nor parts.

The address decoder consists of 5 rods running parallel to each other and to the

memory output AND gates. Each rod corresponds to an input bit of the address decoder.

Each rod can be shifted in position one unit eastward. As shown in Figure 5.27 each rod

is made from NORTH facing wire parts except for 32 special parts call path-forming

parts which have their primary axis in the BACK direction. The spacing of these path-

forming parts is such that for each of the 32 possible combinations of position for the 5

rods, exactly one signal path is formed from the alignment of path-forming parts so that

a single memory module is selected. This is achieved by locating path-forming part n at a

position 6n−pr(n) from the WEST end of the rod, where 0 ≤ n ≤ 31 and p is determined

for each part of each rod r as follows:

p0(n) = 1 if n mod 2 > 0, p0(n) = 0 otherwise

p1(n) = 1 if n mod 4 > 1, p1(n) = 0 otherwise

p2(n) = 1 if n mod 8 > 3, p2(n) = 0 otherwise

p3(n) = 1 if n mod 16 > 7, p3(n) = 0 otherwise

p4(n) = 1 if n mod 32 > 15, p4(n) = 0 otherwise

A mechanism is required to convert the output of the upper 5 bits of the program

counter (which use the static signal representation) into an offset for each address decoder

rod. Figure 5.28 shows a single bit of this mechanism called the selector mechanism. If a

Figure 5.27. The structure of the address decoder.

128

logic 1 signal is input at A it will cause structure B (and anything connected to it) to adopt

the EAST position. Otherwise B will adopt the WEST position. The fuse and unfuse

parts in the selector mechanism ensure that when A is stable, structure B is connected to

the rest of the selector mechanism.

Figure 5.28. The selector mechanism for converting a static signal value to an offset.

5.10 Instruction set

The instruction set must contain instructions for carrying out the following operations:

• Moving the construction head in each of 6 directions

• Specifying 24 orientations

• Dispensing 6 types of part

A single 6-bit instruction word can be used to encode all of these operations.

An additional factor to account for in the design of the instruction set is that the

machine requires some mechanism for repeating sequences of instructions. In order for

the memory to be able to store the instruction sequence required for replicating the entire

machine, the number of instructions required for constructing the memory must fit into

the memory itself. This is only possible if the memory has a regular structure that can

be described by a repeated sequence of instructions. By enabling instruction sequences to

129

be repeated we will also reduce the number of instructions needed for constructing other

parts of the machine that also have redundancy or regularity in their structure.

Two possible mechanisms for repeating instructions are loops and subroutines. Since

a subroutine call mechanism can be used to emulate the effect of a loop (at the expense

of a slightly increased number of instructions), and since a subroutine call mechanism can

be used to remove several types of redundancy within a sequence of instructions, it was

decided to implement a subroutine call mechanism but not a loop mechanism.

Table 5.5 shows the complete instruction set for the machine along with the encoding

chosen for each instruction.

Instruction Encoding Meaning

DEL 000101 Dispense a wire part
NOR 000010 Dispense a nor part
SLI 000111 Dispense a slide part
ROT 000100 Dispense a rotate part
FUS 000011 Dispense a fuse part
UFS 000110 Dispense a unfuse part

ORIENT p 1ppppp Set the orientation register to p

NORTH 001000 Move the construction arm NORTH
EAST 001101 Move the construction arm EAST
SOUTH 001100 Move the construction arm SOUTH
WEST 001001 Move the construction arm WEST
FRONT 001110 Move the construction arm FRONT
BACK 001010 Move the construction arm BACK

CALL a 1aaaaa 1aaaaa Call the subroutine at address 4096 + 4a
RETURN 011000 Return from the current subroutine

GATHER 010000 Begin collecting parts.
NOP 000000 No operation - do nothing

Table 5.5. Instruction encoding scheme.

A CALL instruction requires two instruction words and contains a 10-bit operand a.

The destination address for a call instruction is 4096+4a. This means that all subroutines

must be placed within the upper 4,096 words of the 8,192 word memory and must begin

on a 4 word boundary. This results in some wastage of memory when the length of a

subroutine is not a multiple of 4 words but this wastage is more than made up for by

having the CALL instruction fit into two words rather than three.

130

Note that the CALL and ORIENT instructions both use an encoding in which the

most significant bit (MSB) of the instruction word is 1. A sequence of two consecutive

instruction words with MSB set to 1 will be interpreted as a CALL instruction, whereas a

single instruction word with MSB set to 1 will be interpreted as an ORIENT instruction.

The only restriction that this places on the instruction sequence is that an ORIENT

instruction may not precede a CALL instruction. This situation can be prevented by

inserting a NOP instruction whenever this situation occurs.

This instruction encoding used for movement of the construction arm and for dispens-

ing parts is chosen in such a way as to lead to an efficient design for the mechanism that

interprets instruction words: the instruction decoder. Both instruction decoding and serial

encoding for movement and dispensing instructions are combined within the instruction

decoder. Figure 5.29 shows this mechanism. The mechanism also contains decoders for

the RETURN and GATHER instructions.

In Figure 5.29 the diagonal line of wire parts labelled A is the 7-bit input to the

decoder. The first 6-bits come directly from the memory. The 7th bit is derived from

the signal from the comparator that is used to compare the lower 8 bits of the program

counter with the memory address counter. The 7th bit tells the instruction decoder that

there is something to decode.

The decoding and interpretation of CALL and ORIENT instructions is carried out by

the control unit.

5.11 Control unit

The control unit is the part of the machine that deals with the flow of program execution.

It keeps track of which instruction is to be executed next, manages changes in program

flow (resulting from the execution of CALL and RETURN instructions) and is responsible

for the correct interpretation of CALL and ORIENT instructions.

Figure 5.30 shows a schematic diagram of the control unit.

5.11.1 Program counter and call stack

Central to the operation of the control unit is the program counter. This is a 13-bit register

storing the address in memory of the next instruction word to be fetched from memory

and executed. The program counter increments by one every time a word is fetched from

memory. Only the lower 12-bits of the program counter increment. After interpreting the

instruction word at address 4,095, program flow continues at address 0 rather than address

131

Figure 5.29. Instruction decoder.

4,096. The effect of this is that after it has finished constructing the child machine, the

parent machine restarts execution of the construction program and begins constructing a

second child machine.

When a CALL instruction is executed the program counter is pushed onto the call

stack and the 10-bit operand of the CALL instruction is multiplied by 4 and loaded into

bits 2 to 11 of the program counter. Bits 0 and 1 of the program counter are set to 0 and

132

Figure 5.30. The control unit.

bit 12 is set to 1. This has the effect of multiplying the operand of the call instruction by

4 and adding 4,096.

When a RETURN instruction is issued the program counter is popped from the call

stack and then incremented by 1 so as to continue execution from the instruction after

that which led to the subroutine call.

The call stack is implemented as an array of flip flops that can move back and forth

133

SOUTH of the program counter. After a value is pushed onto the call stack, the whole

array is moved backwards. Before popping a value from the call stack, the whole array is

moved forward.

Figure 5.31 shows a single bit of the program counter and the interface between the

program counter and the call stack.

Figure 5.31. A single bit of the program counter and call stack.

Figure 5.32 shows a graphical representation of the program counter and call stack.

5.11.2 Memory address counter and comparator

The word being output by the memory unit at a point in time depends upon which of the

32 memory modules is selected and the time t. If we define t0 as the time at which memory

module 0 outputs word 0 when memory module 0 is selected then the word being output

at time t when memory module m is selected is given by ((t− t0) mod 256)) + 256m.

The selected module m is determined by the upper 5 bits of the program counter. In

order to obtain the memory word addressed by the program counter we need to sample the

output of the memory unit at a time when the address of the offset within a single memory

134

Figure 5.32. A graphical representation of the program counter and call stack.

module of the word being output matches the lower 8 bits of the program counter. In order

to do this comparison we need an 8-bit counter that increments by 1 every time unit to

keep count of which word is currently at the output of the memory unit. This counter

is called the memory address counter and is shown in Figure 5.33. Figure 5.34 shows a

graphical representation. Bits 0 to 4 of the memory address counter are made from signal

loops containing patterns of signals that cause an incrementing binary sequence to appear

on outputs 0 to 4. Bits 5 to 7 are a 3 bit counter clocked by bit 4.

Figure 5.35 shows an 8-bit comparator. A graphical representation is given in Figure

5.36. The comparator compares the values of 8-bit pulse signal inputs A and B to produce

a pulse signal output O. If all 8-bits of input A match those of input B then a logic 1 pulse

signal will emerge at O 18 time units later, otherwise a logic 0 pulse signal will emerge.

When the program counter is being updated as a result of an increment from one

address to the next or as a result of a CALL or RETURN instruction, the outputs of the

program counter are indeterminate for a short period of time and therefore the output of

the comparator may not be meaningful. The read inhibit flip flop shown in Figure 5.30

fulfills this role of preventing the output of the comparator from reaching the instruction

decoder during the period of time when the program counter updates.

135

Figure 5.33. The memory address counter.

136

Figure 5.34. A graphical representation of the memory address counter.

5.11.3 Call and orientation registers

As described in section 5.10 two consecutive instruction words with MSB set are inter-

preted as a CALL instruction, where the 10-bit operand is formed from the least significant

5 bits of each word. When a single instruction word with MSB set is encountered, it is

interpreted as an ORIENT instruction and the least significant 5 bits of the instruction

word are used the specify orientation of parts.

Figure 5.30 shows the logic required to interpret CALL and ORIENT instructions

correctly. When an instruction word with MSB set is encountered, the 5 least significant

bits of the word are stored in call register A. When the second instruction word is executed

and the MSB is not set then the contents of call register A are loaded into the orientation

register. If the MSB of the second instruction word is set, then the 5 least significant

bits of this word are stored in call register B, and a 4-pulse signal is sent to the program

counter and call stack which causes the program counter to be pushed onto the call stack

before the program counter is loaded with an address formed from call registers A and B.

The call registers and the orientation register have different requirements and hence

different designs. The call registers must accept pulse signal inputs and do not need

to hold their value for a long time — only for as long as it takes to execute a CALL

instruction.

Figure 5.37 shows a single call register. The shaded parts in the register form moveable

structures whose position determines the output of each register bit. These structures are

137

not connected to any other part of the register. The register has a reset input that will set

all of the outputs O to logic 0 and put the register into a state where future logic 1 inputs

to the parts labelled A will cause individual bits to be set. After a logic 1 is received at

the part labelled B, any inputs to the register through parts A will no longer have any

effect on the outputs; the outputs will effectively be fixed until the next reset signal. Note

that the geometry of the inputs to this register matches the geometry of the outputs from

the memory module so that all bits entering the register are synchronised.

Figure 5.38 shows a graphical representation of the call register.

The orientation register takes its static signal inputs from call register A and must

store its value until the next ORIENT instruction is executed. The orientation register

can be implemented in a straightforward way using flip-flops as described in Figure 4.6.

5.12 Programming the SRPC

Construction programs for the machine are written using the instruction set described

in section 5.10. Programs are assembled using a simple single pass assembler and then

written into memory modules using a function written for this purpose as part of the suite

of classes described in section 4.4.2.

The construction program required for self-replication fits into 8,191 words. The fact

that this is close to the capacity of the memory is no coincidence. During the development

of the machine it was difficult to estimate the final size of the construction program. After

the machine was designed and the construction program was written it was found to be

several hundred words larger than the capacity of the memory. The program was examined

very carefully to look for every opportunity to use subroutines to reduce the program size

below 8,192 words.

One method of reducing the size of the construction program was to use the same

subroutine for constructing most of every storage mechanism. The disadvantage of this

is that all six storage mechanisms in the child machine end up containing 26 nor parts

which have to be flushed out of the child machine before construction can begin. For this

reason the child machine has some parts protruding BACK by 4 units from the NORTH

of the memory — these are the flushed parts.

The complete construction program is too long to list here but can be found on the CD

attached to this thesis. Two portions of the construction program are listed in Appendix

B. The first listing is for the construction of a single memory module and shows how

the use of subroutines allows a large structure to be constructed using a small number

138

of instructions. The second listing is for the construction of a mechanism for converting

from the pulse signal representation to the 4-pulse signal representation and shows how a

structure with more complex connectivity requirements can be constructed.

Construction generally proceeds from BACK to FRONT in layers, and from EAST

to WEST within each layer. The BACK to FRONT direction is dictated by the fact

that the construction arm is at the BACK of the parent machine, and the EAST to

WEST direction is dictated by the design of the construction head.

There is one point in the construction program where the time that the construction

operation happens is important. The value output by the memory address counter must

be aligned with the contents of the memory. This is achieved by making sure that an

EAST the instruction that causes the memory address counter to begin counting is at

an address 118 words from a 256-byte boundary. The particular instruction in question

happens to be the final EAST instruction within a shared subroutine called ‘East3:’. When

writing the construction program it is easy to move subroutines around in memory, so this

subroutine was moved so that the EAST instruction is at address 8,054.

The child machine is constructed in a state where it is about to begin collecting parts,

as though it had just executed a GATHER instruction. The final piece of the child machine

that is constructed is the detect mechanism. Activating the child machine is a matter of

injecting a signal into the detect mechanism which causes the child to begin moving in a

WEST direction looking for parts.

Before the construction program was written, it was not known whether or not it

would actually be possible to construct a replica given the relatively small working area of

the construction arm compared to the size of the machine. The fact that some structures

have connectivity patterns that are difficult to construct also introduced uncertainty.

It turned out that it was possible to construct a replica machine which is functionally

identical to the parent machine with the caveat that some subsystems were redesigned so

as to make them easier to construct. When necessary, connections between subsystems

within the child machine are made using carefully positioned fuse parts. In several places

signal paths which are made from wire parts in the parent machine are replaced with

nor parts in the child machine to prevent the storage areas from becoming exhausted

during construction. For the same reason there are several places in the machine where

parts that are performing a structural function, in which the part type does not matter,

differ between the parent machine and the child machine. No attempt was made to make

sure that the precise pattern of part connectivity across the whole machine is identical

in the parent and the child. Generally, all neighbouring parts in the parent machine are

139

connected unless the operation of a mechanism requires that they are not. In the child

machine the connectivity pattern is such that any two parts that are indirectly connected

in the parent machine will also be indirectly connected in the child machine, but the

pattern of direct connectivity may differ.

It would be possible to propagate these small differences between the child machine

and parent back into the parent machine but this would be time consuming — particularly

for the differences in part connectivity. It would also disguise the fact that the CBlocks3D

environment and the architecture of the machine impose restrictions that lead to these

design compromises. These differences do not affect the function of the machine: the

machine that the child machine constructs for a given construction program is identical to

that constructed by the parent machine. Therefore the child machine and the grandchild

machine are identical.

5.13 Validating the design

The correctness of the design of the machine and of the construction program was validated

in three different steps.

Firstly the operation of the sorter was validated by programming the SRPC to execute

a single GATHER instruction and placing to the WEST of the input orifice of the detect

mechanism a collection of parts containing every type of part in every possible orientation.

The machine was able to correctly classify every part that it encountered.

Secondly a full simulation of an SRPC constructing a replica machine was carried out.

In order to minimise the simulation time required for this, the initial environment of the

machine contained parts laid out in the SF orientation in the order that they would be

required.

As mentioned in section 5.12 the child machine is not identical to the parent machine so

a third step was required to complete the validation process. The second step was repeated

with the child machine in place of the parent machine and then a comparison was made

to verify that the machine that the child constructed (i.e. the grandchild machine) was

identical to the child machine.

All three validation steps were completed successfully. All of the input files required

to validate the design along with the output files containing the results of simulations are

contained on the CD attached to this thesis.

140

Figure 5.35. An 8-bit comparator.

141

Figure 5.36. A graphical representation of the comparator.

142

Figure 5.37. A call register.

143

Figure 5.38. A graphical representation of a call register.

144

Chapter 6

Computing in Kinematic

Environments

A kinematic environment has been defined as a system in which moveable parts interact

with each other in some way and can be connected together to make larger structures.

One of the considerations that led to the CBlocks3D system described in chapter 4 was

that of attempting to reduce as far as possible the set of part types used by a self-

replicating programmable constructor (SPRC) in a kinematic environment. In chapter 5

the information processing systems of an SRPC are made largely from wire and nor parts,

but occasionally kinematic features of the environment are used to implement information

processing mechanisms. For example the address decoder and the call stack both depend

upon interacting moveable structures for their operation.

If it were possible to harness the kinematic behaviour of kinematic environments to

implement all information processing mechanisms then this could potentially lead to a

reduction in the number of part types needed to implement a machine like the one of

chapter 5 by removing the need to have dedicated information processing parts such as

the wire and nor parts.

It is also interesting from a physical perspective to consider whether an entirely me-

chanical SRPC in or near region G of Figure 2.18 on page 36 can be designed. It might be

easier to do this than to design an electronic or electromechanical SRPC because electronic

and electromechanical components tend to require high-precision processes to manufac-

ture. If the manufacture of these components were beyond the scope of the SRPC itself,

they would have to be provided as elementary parts and the resulting design would move

away from region G along the part complexity axis.

146

6.1 Mechanical computing machines

The earliest computers were either wholly mechanical or contained a significant number

of mechanical parts. Automated mechanical calculating aids have been around since the

early 17th century [33]. In the mid 19th century Babbage’s designs for his analytical engine

[5] used columns of cogged wheels for storing decimal numbers. Operations on columns of

wheels were carried out mechanically and the result of an operation automatically stored

back into another column. The flow of a program in Babbage’s machine could be made

dependent on the result of a calculation, giving the engine the same computational power

as a modern computer.

In the 1930s and 1940s Konrad Zuse designed and built several mechanical and elec-

tromechnical computers [53]. Zuse used a binary system for representing and storing num-

bers, which made his designs simpler and easier to build than Babbage’s. His machines

were also less ambitious than Babbage’s, having a smaller memory and a less expressive

instruction set. Table 6.1 compares the Z1 with the SRPC control unit described in sec-

tion 5.11. This comparison indicates that the two systems have a similar complexity and

that therefore it is reasonable to speculate that a machine no more complex than the Z1

could be used as the control unit for a mechanical SRPC.

Item Z1 SRPC Control Unit

Instruction word size 8 bits 6 bits
Types of instruction 8 6
Program size Unlimited tape length 8192 words
Memory size 64 words of 22 bits 8 words of 13 bits (call stack)
Component parts Approx. 30,000 4,786 (not including memory)

Table 6.1. Comparison of Zuse’s Z1 with the control unit of section 5.11.

Little theoretical work was carried out on mechanical computing before Zuse. It is a

matter of historical conjecture that the advent of vacuum tubes and then transistors so

soon after the potential of computers was recognised and the theoretical underpinnings

of computing were established meant that mechanical computing machines never estab-

lished themselves as they might have done had Babbage been successful in completing his

analytical engine.

Recently there has been a resurgence of interest in the embodiment of computing

systems in mechanical and other non-electronic substrates [30, 1].

In the interest of trying to reduce the number of parts that a system must support,

investigations in this chapter adopt the principle of attempting to implement computing

147

schemes with the minimal number of types of part and the simplest types of interaction.

The billiard ball computing system of Fredkin and Toffoli [20] and similar schemes are

a good example of this principle. However, this scheme was devised in order to investigate

the theory of reversible computing and not as a practical system. There are some practical

difficulties in implementing the billiard ball scheme. The first is that of positioning the

billiard balls accurately and somehow making sure that any slight imperfections in colli-

sions don’t eventually end up causing the balls to be in the wrong position. The second is

that once a configuration of balls has carried out a computation it can no longer be used.

The system is a one-shot computing device.

The two results presented in this chapter, which have been published in [62] and [63],

show how simple kinematic interactions can be used to implement reusable computing

devices. Although both models are based in discrete space kinematic environments, the

scheme in section 6.2 has a plausible physical implementation.

This thesis does not go as far as showing how these computing schemes can be used

as the basis for information processing in an SRPC.

Software for simulating the systems described in this chapter can be found on the CD

attached to this thesis.

6.2 Logic circuits in a system of repelling particles

The set of cellular automaton rules given in figure 6.1 specifies a simple behaviour: neigh-

bouring tiles repel one another, but some tiles can be fixed in place.

Figure 6.1. Tile behaviour specified as a set of cellular automaton rules

These rules specify a cellular automaton with an eight cell cross-shaped neighbourhood

and three states per cell. A cell can be empty, or it can contain a fixed tile, or it can

contain a moveable tile. In figure 6.1 empty cells are denoted by a square with a dashed

boundary, fixed tiles are denoted by a square with a cross in, moveable tiles are denoted

by a square with a solid boundary. Cells with a dot in the centre can be in any of the

three states. The rules are symmetrical, so if a configuration of tiles rotated through any

multiple of 90 degrees matches a rule, the central cell changes to the state to the right

of the arrow on the next time step. If a configuration matches none of these rules, the

central cell remains in the same state.

148

These rules are sufficient for all of the mechanisms described in this section.

6.2.1 Some basic mechanisms

Figures 6.2 to 6.10 show nine basic mechanisms from which more complex mechanisms

can be put together.

Figure 6.2. Wire Figure 6.3. Cross Figure 6.4. Corner (Type 1)

Figure 6.5. Corner (Type 2)
Figure 6.6. Changer Figure 6.7. Fan-out

Figure 6.8. Combine
Figure 6.9. Both Figure 6.10. Hold

The notation used to describe the behaviour of each of these mechanisms will be

introduced as it is used. The letters n,e,s and w that appear in square brackets in equations

denote the directions north (up the page), south (down the page), east (to the right of

the page) and west (to the left of the page).

6.2.1.1 Wire

For the Wire in figure 6.2 we can write:

A[e]

A[w]

C[e]
�
�3
-
1

2 (6.1) C[w]

C[e]

A[w]
�
�3
-
1

2 (6.2) A[e],C[w]

A[w]

C[e]
�
�3
-
1

1 (6.3)

149

Equation 6.1 states that the result of displacing A eastward by one unit at time tA is

that A will be displaced westward at tA + 1, and C will be displaced eastward at tA + 2.

(The centre tile in the Wire will also move, but will return to its original position). A Wire

can thus be thought of as a path along which a signal can propagate, where the signal

consists of a displacement of a tile away from its normal position in the path. Wires of

any length can be made.

Note that a Wire also works in reverse, as described by equation 6.2

Equation 6.3 describes what happens if both ends of a Wire are moved at once. This

‘cancelling out’ behaviour is used extensively by the logic gate described in section 6.2.3.

6.2.1.2 Cross

The Cross in figure 6.3 can be thought of as two wires crossing one another.

Note that the Cross mechanism misbehaves when (A[e]∨C[w])∧ (D[s]∨E[n]) at any

time, so any circuit using the Cross mechanism must avoid this.

6.2.1.3 Corner (Type 1)

For the Type 1 Corner in figure 6.4 we can write:

A[n]

A[s]

E[e]
�
�3
-
1

6 (6.4) E[w]

E[e]

A[s]
�
�3
-
1

6 (6.5)

6.2.1.4 Corner (Type 2)

For the Type 2 Corner in figure 6.5 we can write:

A[n]

A[s]

D[e]
�
�3
-
1

3 (6.6) D[w]

D[e]

A[s]
�
�3
-
1

3 (6.7)

Note that both types of Corner can propagate signals in either direction.

6.2.1.5 Changer

For the Changer in figure 6.6 we can write:

A[n]

A[s]

B[n]
�
�3
-
1

7 (6.8)

The Changer is so-called because it alters the spacing of the tiles in a signal path.

This is often necessary when joining mechanisms together.

150

6.2.1.6 Fanout

For the Fanout mechanism in figure 6.7 we can write:

A[n]

A[s]

B[e]

C[n]

D[w]

�

�
�3
-

Q
Qs

1

3

4
5

(6.9)

If we need fewer than 3 outputs, any of the output paths in the Fanout mechanism

can be replaced with a single fixed tile.

6.2.1.7 Combine

For the Combine mechanism in figure 6.8 we can write:

A[e]

A[w]

F [n]
�
�3
-
1

5 (6.10) D[w]

D[e]

F [n]
�
�3
-
1

4 (6.11)
F [s]

F [n]

A[w]

D[e]

�
�3
-

Q
Qs

1

5
4

(6.12)

Equations 6.10 and 6.11 show that an output emerges from F when a signal is applied

to either A or D. Equation 6.12 describes the behaviour of the Combine mechanism when

driven from F .

6.2.1.8 Both

The Both mechanism will produce an output only after both of its inputs have been

stimulated:

A[e] -�
�3A[w]

D[e]

1

1

B[w] -
Q
Qs

E[w]

B[e]

1
1

�
�3
-

Q
Qs

D[w]

C[n]

E[e]

3

4
3

max(tA,tB)+1

(6.13)

A[e] -A[w]1

B[w] -B[e]1

-C[n]5

max(tA,tB)

(6.14)

In equation 6.13 the dashed line with arrows leading to subsequent events indicates

that the occurrence of two events causes the subsequent events (with subsequent events

starting at time max(tA, tB) + 1).

Because tiles D and E return to their original positions during the operation of this

mechanism, it can be described more concisely by equation 6.14.

151

6.2.1.9 Hold

The Hold mechanism in figure 6.10 consists of four paths meeting at a junction, and is

used as follows. At time tA tile A may or may not be displaced eastward. At time tE tile

E may or may not be displaced westward. So that at time tm = max(tA, tE)+ 1 the Hold

mechanism may be in one of the four possible states shown in figures 6.10 to 6.13. At

time tC ≥ tm tile C is displaced northward, and the response of the mechanism depends

upon which of the four states it is in.

Let us call the arrangements shown in figures 6.10, 6.11, 6.12 and 6.13 H0, H1, H2 and

H3 respectively.

Figure 6.11. H1 Figure 6.12. H2

Figure 6.13. H3 Figure 6.14. H4

Equations 6.15 to 6.18 describe H0, H1, H2 and H3 respectively. What we have in

effect is a mechanism that allows us to collide two signals (entering at A and E) together

without having to worry about the relative timing of the two signals, because the collision

only takes place when a signal is applied at C. When the Hold mechanism is used in a

circuit, any signals emerging from A or E after the collision will propagate away from the

Hold mechanism, leaving it in the state shown in figure 6.14, which we call H4. We can

return the mechanism to its original state H0 by applying a signal at G.

C[n]

C[s]

D[n]
�
�3
-
1

1 (6.15)

C[n]

C[s]

B[w]

E[e]

�
�3
-

Q
Qs

1

2
4

(6.16)

C[n]

C[s]

F [e]

A[w]

�
�3
-

Q
Qs

1

2
4

(6.17)

C[n]

C[s]

B[w]

F [e]

�
�3
-

Q
Qs

1

2
2

(6.18)

152

G[s]

G[n]

D[s]
�
�3
-
1

2 (6.19)

Equation 6.19 describes the behaviour of H4 when a signal is applied at G.

The fact that a signal will only be output at E if a signal is input at A but not at E

before time tC is the basis of the logic gate described in section 6.2.3.

6.2.2 Circuits

Circuits can be made by connecting mechanisms together, and in the next section a dual-

rail logic gate is made using the nine mechanisms described in the previous section. Before

doing this, it is necessary to show how to describe the behaviour of two mechanisms joined

to one another in such a way that a signal emerging from one will enter another.

Figure 6.15 shows a Wire and a Combine mechanism that have tile B in common. We

saw earlier how to describe the behaviour of each of these mechanisms. Equation 6.20

describes the behaviour of the joined mechanisms.

Figure 6.15. Two mechanisms joined via tile B

A[e]

A[w]

B[e]

B[w]

C[s]

D[n]

�
�3
- �

�3
-

Q
Qs

1

2

1

5
4

(6.20)

A[e]

A[w]

C[s]

D[n]

�
�3
-

Q
Qs

1

7
6

(6.21)

In words, equation 6.20 says that a displacement of A eastward by one unit at tA

causes A to be displaced westward at tA + 1 and B to be displaced eastward at tA + 2.

The displacement of B subsequently causes B to be displaced westward at tA + 2 + 1, C

to be displaced southward at tA + 2 + 5 and D to be displaced northward at tA + 2 + 4.

Because there is no net movement of B, we can shorten equation 6.20 to equation 6.21.

6.2.3 A dual-rail logic gate

In subsection 6.2.1.9 we saw how the Hold mechanism effects a logical operation. In order

to use this logical operation as the basis for a logic gate, additional circuitry is needed.

The A and E inputs to the Hold mechanism also serve as outputs after a signal has

been applied at C. To enable us to extract a signal returning along a path which is also

153

used as an input we can use the mechanism shown in figure 6.16, called a ‘uni-directional

gate with tap’. An analysis of this mechanism is given in equations 6.22 and 6.23.

Figure 6.16. Uni-directional gate with tap

A[n] -�
�3A[s]

B[w]

1

4 -�
�3B[e]

C[n]

1

6 -�
�3C[s]

D[n]

1

2 -�
�3D[s]

E[e]

1

3 -�
�3E[w]

F [e]

1

2 -�
�3F [w]

G[s]

1

5 -�
�3G[n]

I[e]

1

5 (6.22)

I[w] -�
�3I[e]

G[n]

1

5 -�
�3

Q
Qs

G[s]

F [w]

J [e]

1

5
4

-�
�3F [e]

E[w]

1

2 -�
�3E[e]

D[s]

1

3

C
C
C
C
C
C
C
CWH[s]

4

-�
�3H[n]

B[w]

1

5 -�
�3B[e]

C[n]

1

6

�
�3
-

D[n]

C[s]

1

1tI+15

(6.23)

In equation 6.23 (as in equation 6.13) the dashed line with arrows leading to subsequent

events indicates that the occurrence of two events (at time tI +15 in this case) causes the

subsequent behaviour (in this case, the behaviour of a wire when both ends are displaced

at once).

By observing which tiles return to their original positions during the course of the

operation of this mechanism, we can shorten these equations to:

A[n] -�
�3A[s]

I[e]

1

27 (6.24) I[w] -�
�3I[e]

J [e]

1

9 (6.25)

Thus, by applying a signal to A we can inject a signal onto a path connected to I. If

a signal enters the mechanism at I, it will emerge at J .

154

Note that the number of tiles used in this mechanism could be reduced by shortening

some of the paths. However, if we were to do this then we would not be able to analyse

the mechanism in terms of the nine basic mechanisms described previously. To simplify

the analysis and to make it clear which of the basic mechanisms we are using, we will use

longer paths than are necessary.

By omitting the J output from the mechanism shown in figure 6.16, we can make a

uni-directional gate described by equations 6.26 and 6.27.

A[n] -�
�3A[s]

I[e]

1

27 (6.26) I[w] -I[e]1 (6.27)

Thus, the uni-directional gate will permit a signal to travel from A to I, but not in

the reverse direction.

Recall that in dual-rail or 1-of-2 logic, every logical value X is represented by a pair

of binary values X1 = X and X0 = X̄. We can implement a dual-rail logic scheme by

using two signal paths corresponding to X0 and X1 in such a way that the passage of

a signal along one path represents logic 0, and the passage of a signal along the other

path represents logic 1. For a dual-rail logic gate with two logical inputs A and B (and

therefore four signal path inputs A0, A1, B0 and B1), it is possible to detect when both

logical inputs have been received using the mechanism shown in figure 6.17.

Figure 6.17. Dual-rail input detection mechanism

There are 4 possible cases to analyse for this mechanism, as shown in table 6.2. A

complete analysis for the first case is given in equation 6.28, which can be shortened to

equation 6.29. Complete analyses for the other three cases are omitted for the sake of

brevity since they follow a similar pattern to equation 6.28.

155

A B A0 A1 B0 B1 Equation

False False 1 0 1 0 6.29
False True 1 0 0 1 6.30
True False 0 1 1 0 6.31
True True 0 1 0 1 6.32

Table 6.2. Input cases for the Dual-Rail Input Detect mechanism

B0[n]

A0[s]

F [w]

B0[s]

A0[n]

C[e]

E[w]

F [e]

C[w]

D[n]

E[e]

-
Q
Qs

�
�3
-

-
Q
Qs

�
�3

-

Q
Qs

4
1

1

5

5
1

1

5

1

max(tA0
+5,tB0

+10)

(6.28)

A0[s] -A0[n]
1

B0[s] -B0[n]
1

-D[n]10

max(tA0
,tB0

+4)

(6.29)

A0[s] -A0[n]
1

B1[s] -B1[n]
1

-D[n]10

max(tA0
,tB1

+5)

(6.30)

A1[s] -A1[n]
1

B0[s] -B0[n]
1

-D[n]9

max(tA1
,tB0

+5)

(6.31)

A1[s] -A1[n]
1

B1[s] -B1[n]
1

-D[n]9

max(tA1
,tB1

+5)

(6.32)

Equations 6.29 to 6.32 show that a signal will emerge at D for every possible combi-

nation of logical values that A and B can take.

When describing the Hold mechanism shown in figure 6.10 we noted that it will be

used by firstly applying signals at A or E (or both, or neither), then applying a signal at

C, and afterwards applying a signal at G to reset the mechanism. The augmented hold

mechanism shown in figure 6.18 allows us to dispense with having to apply a reset signal

by deriving a reset signal from the signal at C.

The net behaviour of the augmented hold mechanism is given in equations 6.33 to 6.36

for the four possible cases that result if signals are applied at A or B or both or neither.

156

Figure 6.18. Augmented hold mechanism

A[e] -A[w]1

C[n] -C[s]1

-B[e]8

max(tA,tC+5)

(6.33)

B[w] -B[e]1

C[n] -C[s]1

-A[w]8

max(tB,tC+5)

(6.34)

A[w] -A[e]1

B[w] -B[e]1

C[n] -C[s]1 (6.35)
C[n] -C[s]1 (6.36)

Equation 6.35 holds so long as tC ≥ max(tA − 5, tB − 9).

Using a uni-directional gate with tap, a uni-directional gate, an augmented hold mech-

anism, a dual-rail input detection mechanism, two Combine mechanisms, a Changer and

some connecting wires we can make the mechanism shown in figure 6.19. This mechanism

feeds signals derived from A0 and B1 into an augmented hold mechanism, where a colli-

sion will take place once the dual-rail input detect mechanism indicates that all required

inputs have been received. After the collision a signal will emerge at O if a signal was

applied at A0 but not at B1. A signal derived from the output of the dual-rail input detect

mechanism will emerge at P regardless of the logical values of A and B.

Equation 6.37 shows an analysis of the case for A0[e] at time tA0 and B0[n] at time

tB0 .

157

Figure 6.19. Logic gate - Stage 1

A0[e]

A0[w]

K[n]

C[s]

C[n]

K[s]

D[s]

B0[n]

D[n]

E[n]

B0[s]

L[e]

F [n]

E[s]

L[w]

M [e]

P [w]

F [s]

M [w]

N [e]

N [w]

O[w]

�
�3
-

Q
Qs

�
�3

-

-

?

-

-

-

-
Q
Qs

-

-

-
Q
Qs

�
�3
- �

�3
-

1

5
4

1

1

8

28

1

10

1

8
1

1

8

12
1

1

1

1

9

max(tA0
+8,tB0

)+4

max(tA0
+8,tB0

)+27

(6.37)

This can be simplified to equation 6.38. Equations for the other three cases are shown

in 6.39 to 6.41. (Complete analyses for these are not given since they follow a similar

pattern to 6.37).

A0[e] -A0[w]
1

B0[n] -B0[s]
1

-
Q
Qs

P [w]

O[w]

1
12

max(tA0
+8,tB0

)+33

(6.38)

A0[e] -A0[w]
1

B1[w] -B1[e]
1

-P [w]1

max(tA0
,tB1

+7)+42

(6.39)

158

A1[n] -A1[s]
1

B0[n] -B0[s]
1

-P [w]1

max(tA1
,tB0

+5)+29

(6.40)

A1[n] -A1[s]
1

B1[w] -B1[e]
1

-P [w]1

max(tA1
,tB1

+14)+29

(6.41)

Thus in all four cases, a signal will emerge at P .

In the case shown in equation 6.38 (where signals are applied at A0 and B0), a signal

will emerge at P at time tP = max(tA0 +8, tB0) + 34 and another signal will emerge at O

at time tO = max(tA0 + 8, tB0) + 45 = tP + 11.

The mechanism shown in figure 6.20 can be used to derive a signal from O to use as

the Q1 output of a dual-rail logic gate, and to derive a signal from P and O to use as the

Q0 output of a dual-rail logic gate.

Figure 6.20. Logic gate - Stage 2

An analysis of this mechanism is given in equations 6.42 and 6.43.

P [w] -�
�3P [e]

A[w]

1

17 -�
�3A[e]

B[n]

1

6 -�
�3B[s]

C[n]

1

1 -�
�3C[s]

D[e]

3

2 -�
�3D[w]

F [e]

1

17 -�
�3F [w]

Q0[w]

1

9 (6.42)

P [w]

P [e]

A[w]

A[e]

B[n]

O[w]

B[s]

C[n]

G[n]

O[e]

C[s]

D[e]

Q1[e]

H[n]

G[s]

D[w]

E[e]

F [w]

H[s]

E[w]

F [e]

�
�3
- �

�3
- �

�3
-

-
Q
Qs

�
�3
-

�
�3
-

Q
Qs

�
�3
-

-
Q
Qs

�
�3
-

1

17

1

6

1

7

5
1

1

2

4

4
1

1

15

27
1

1
1

tO=tP+11

(6.43)

159

These equations can be simplified to 6.44 and 6.45 and used in conjunction with 6.38

to 6.41 to deduce the overall behaviour of the logic gate.

P [w]

P [e]

Q0[w]
�
�3
-
1

54 (6.44)

P [w] -P [e]1

O[w]
�
�3
-

Q1[e]

O[e]

9

1 (6.45)

A B Inputs to gate Outputs from gate Q

F F A0 at tA0 , B0 at tB0 Q1 at max(tA0 + 8, tB0) + 92 T
F T A0 at tA0 , B1 at tB1 Q0 at max(tA0 , tB1 + 7) + 97 F
T F A1 at tA1 , B0 at tB0 Q0 at max(tA1 , tB0 + 5) + 84 F
T T A1 at tA1 , B1 at tB1 Q0 at max(tA1 , tB1 + 14) + 84 F

Table 6.3. Truth table for the logic gate

Thus, the overall behaviour of our dual-rail logic gate is described by table 6.3. From

this, it can be seen that the logic gate is a dual-rail implementation of a boolean NOR

gate.

6.2.4 Summary

The number of tiles in the logic gate could be reduced by shortening the paths between

mechanisms and by reducing the size of some mechanisms which were deliberately kept

larger than necessary in order to clarify their structure. Unused fixed tiles could also be

removed at some corners and in some Combine mechanisms.

The part of the logic gate that performs the logic operation is the augmented hold

mechanism. If we placed constraints on signal timing at the inputs to the gate, we could

do without this mechanism and replace it with a wire, resulting in a simpler gate. However,

if we were to do this and then attempt to connect several logic gates together to make a

circuit we would have to introduce delays between one gate and another in order to meet

timing constraints.

The following arrangement could be used to make a physical implementation of this

system: There is a regular lattice of traps in which particles are held fixed in place. Traps

are disengaged, particles are released and repel one another. When enough time has

passed for any neighbouring particles to have moved to adjacent lattice points, the traps

are reengaged to trap the particles again. The force-distance profile of the repulsive force

between particles must be such that particles at neighbouring lattice points are strongly

repelled, but particles two or more lattice points apart experience little mutual repulsion.

160

6.3 A kinematic Turing machine

This section shows how a Turing machine can be made using kinematic interactions in

the CBlocks3D environment. The Turing machine presented here has some similarities to

that described by Laing in [35]. The most notable similarity is the way in which state

transitions are implemented. In a state diagram, state transitions can be represented as

arrows that lead from one state to another. In [35] and in the system described here, state

transitions are embodied as paths that run from one state to another that get followed by

the Turing machine.

All mechanisms are made using just one component part similar to the slide part

defined in Table 4.1 on page 68, but which is always active.

6.3.1 Notation and Petri net diagrams

Figures 6.21 and 6.22 show successive states Sn and Sn+1 of a universe.

Figure 6.21. A simple mechanism in state Sn. Constructs A and B are labelled.

Figure 6.22. A simple mechanism one time unit later in state Sn+1.

Figure 6.23 is a state diagram describing the system. Sn and Sn+1 are represented by

circles. The transition between Sn and Sn+1 is represented by an arrow, labelled with the

interaction between constructs that causes the state to change. In this case, the interaction

161

is A,B → B[n]. Meaning ‘An interaction between constructs A and B causes B to move

North’. The whole diagram means ‘When the state of the system is Sn, an interaction

between A and B causes B to move North, and the system ends up in state Sn+1’.

Figure 6.23. State diagram for a simple mechanism.

For systems containing several interacting mechanisms, a method for describing inter-

acting state diagrams is required. Petri nets [50] are suitable for this purpose.

Consider the interacting mechanisms shown in figure 6.24. The behaviour of the mech-

anism labelled CYC can be described by the state diagram shown in figure 6.25. This

mechanism is not influenced in any way by its neighbouring mechanism, FLIP. On the

other hand, construct D in mechanism FLIP is influenced by construct B in mechanism

CYC. A Petri net for the complete system is shown in figure 6.26. A Petri net consists

of conditions which are represented by circles, and transitions which are represented here

by a description of the action corresponding to the transition. Any number of conditions

in a Petri net can be ‘marked’; a marked condition is represented by a dot within a cir-

cle. Pre-conditions of a transition T are those conditions that have arrows leading to T .

Arrows leading from T lead to post-conditions of T . A transition can occur whenever

all pre-conditions of the transition are marked. When a transition takes place all of its

pre-conditions become unmarked and all of its post-conditions become marked. The Petri

nets used in this section are deterministic: whenever a transition can occur it does occur.

Figure 6.24. Two interacting mechanisms.

162

Figure 6.25. State diagram for CYC mechanism.

Figure 6.26. Petri net diagram for CYC and FLIP mechanisms.

6.3.2 Turing machines - definitions

The following formal description of a Turing machine is used.

Set of symbols Σ = {0, 1}
Set of states Q

Transition function δ : Q× Σ → Q× Σ× {−1, 1}
Starting state q0

Halting state qh

The configuration Cn of a Turing machine at a particular step n in its evolution is

defined as follows:

Cn.q ∈ Q is the state of the machine at step n.

Cn.a1...at ∈ Σt, where t ∈ N, are the contents of the tape at step n.

Cn.i is the position of the head on the tape at step n.

163

Cn.ai is used as an abbreviation for Cn.aCn.i.

The initial configuration of the machine is:

C0.q = q0

C0.i = 1

C0.a1...at are the initial contents of the tape.

The evolution of a Turing machine over time is given by equation 6.46. Any contents

of the data tape not changed by equation 6.46 remain unchanged from step n to step n+1.

(Cn+1.q, Cn+1.acn.i, Cn+1.i− Cn.i) = δ(Cn.q, Cn.acn.i) (6.46)

δ(q, a).state, δ(q, a).symbol and δ(q, a).direction are used when it is necessary to refer

to individual elements from the tuple δ(q, a).

The Turing machine halts when Cn.q = qh, and Cn is the final configuration of the

machine.

6.3.3 A Turing machine in the CBlocks3D environment

6.3.3.1 Overview

Figure 6.27 gives an overview of the Turing machine presented in this section.

Figure 6.27. Turing machine - Overview

164

The Turing machine contains the following mechanisms, each of which is described in

detail later on:

• The data tape mechanism DT: This implements a sequence of bits corresponding to

the Turing machine’s tape.

• The program plane construct PP: This implements the transition function δ. For

every q ∈ Q there is a corresponding position of the program plane PP. Let F :

Q → z × z be the function that maps Turing machine states to program plane

positions. A state transition is carried out by moving PP from one position to

another. Information encoded on PP tells the machine how to respond when a 0 bit

or a 1 bit is encountered on the data tape DT. PP also contains parts that trigger

the sequencer SQ via the trigger mechanism TR when a state transition has finished.

• The bit-reading mechanism BR: Interrogates the current position on the data tape

DT and activates the selection mechanism SL if a 1 bit is encountered.

• The selection mechanism SL: This moves the program plane PP so as to select the

second of two sets of information encoded for a particular state on PP.

• The condition-action mechanism CA: Interrogates the program plane PP and per-

forms bit-writing and/or tape-moving actions according to information associated

with the current state on PP.

• The conditional-tape-moving mechanism CTM: Moves the data tape DT six units

backward if activated by the condition-action mechanism CA.

• The unconditional-tape-moving mechanism UTM: Moves the data tape DT three

units forward when activated by the sequencer SQ.

• The sequencer mechanism SQ: Triggers various parts of the machine in turn in order

to perform a cycle of operation. Triggers UTM, then BR, then CA, then PM, then

waits to be reset by the program plane PP after a state transition has occurred.

• The plane-moving mechanism PM: Follows tracks on the program plane PP to effect

a transition from one state to another by moving PP.

• The trigger mechanism TR: Activated by the program plane PP when a state tran-

sition has finished in order to reset the sequencer SQ.

Section 6.3.4 contains illustrations for all of these mechanisms, along with Petri net

diagrams which concisely describe the operation of each mechanism.

165

6.3.3.2 Operation

Suppose that the Turing machine is in a state corresponding to the configuration Cn.

Then the z coordinate of the data tape DT is related to Cn.i by DT.z = 3 × Cn.i + A

where A is a constant that depends on the absolute location of the Turing machine in

space, and bit Cn.ap is represented by pin DT.Bp.

The main body of the Turing machine is made from mechanisms BR, SL, BW, CTM,

PM, UTM, SQ and TR and always remains stationary (apart from movements of internal

mechanisms). Only DT and PP move around.

The operation of the machine is as follows:

1. The machine is in a state corresponding to a configuration Cn.

2. SQ triggers BR, CA, PM and UTM in turn.

3. BR reads the current symbol from DT. If the symbol is 0, SL does not move PP,

otherwise SL moves PP four units backward.

4. CA first examines PP to determine δ(Cn.q, Cn.ai).symbol, and then sets the current

symbol on DT to this.

5. CA then examines PP to determine δ(Cn.q, Cn.ai).direction and hence which direc-

tion to move DT in. It will either leave DT as it is, or move DT six units backward.

6. PM causes PP to move along a path from F (Cn.q) to F (δ(Cn.q, Cn.ai).state)

7. When PP has moved to this new position, PP resets SQ.

8. SQ triggers UTM and UTM moves DT three units forward.

9. The machine is now in a state corresponding to configuration Cn+1. Operation

continues at step 1.

So, by the end of a cycle of operation, the following has happened:

Depending on the current location of PP (corresponding to Cn.q) and the position

of the pin DT.BCn.i at the current location on DT (corresponding to Cn.ai), a symbol

corresponding to δ(Cn.q, Cn.ai).symbol has been written to DT, DT has been moved 3

places forwards or backwards, corresponding to δ(Cn.q, Cn.ai).direction, and PP has been

moved to a new position corresponding to δ(Cn.q, Cn.ai).state. This action corresponds

to the abstract operation described by equation 6.46.

166

The machine can be made to halt by having a path on PP that leads nowhere. When

the machine tries to move PP to a new state by following this path, the operation of the

machine will cease.

6.3.4 Detailed description of mechanisms

6.3.4.1 Data Tape DT

Figure 6.28 shows part of the mechanism DT for representing a sequence of binary digits.

Figure 6.29 shows the same mechanism viewed from the opposite direction. The mecha-

nism consists of a long rod A situated against a series of pins Bx that can be individually

raised or lowered with respect to the rod to represent binary 1 and 0 digits respectively.

The mechanism is designed so that when the rod A is moved east or west, the pins get

moved along with it so that the representation is not disturbed.

Figure 6.28. The DT mechanism for representing a binary string. (View 1)

Figure 6.29. The DT mechanism for representing a binary string. (View 2)

Figures 6.30 and 6.31 shows Petri nets for the data tape DT. Note that DT has a

very large number of possible states, equal to the number of possible z-coordinates of DT

multiplied by the number of integers that all of the bits on DT can represent. Because of

this, figures 6.30 and 6.31 use a pair of integers i, j to represent any one of a large set of

possible states, where i corresponds to the number represented by all of the bits on DT

(and so setting or resetting a bit corresponds to setting i := i + 2n or i := i − 2n), and

167

where j corresponds to the z-coordinate of DT.

The large, dashed-outline circles in figures 6.30 and 6.31 represent states in other Petri

nets. For example, in figure 6.30, the dashed circle labelled with UTM1 represents the

state labelled 1 in the Petri net for UTM (figure 6.43).

Figure 6.30. Petri net for DT. Moving back and forth.

Figure 6.31. Petri net for DT. Resetting and setting a bit.

168

6.3.4.2 Bit Reading mechanism BR

Figure 6.32 shows a mechanism for reading a bit on the data tape. Figure 6.33 shows an

exploded view of the same mechanism in which the different constructs that make up the

mechanism can be distinguished.

Figure 6.32. The BR mechanism for detecting the state of a single bit on a data tape.

Figure 6.33. Exploded view of figure 6.32.

Figure 6.34 shows the Petri net for the Bit Reading mechanism BR, which explains

its operation. Note that this Petri net uses an ‘inhibit’ arc (denoted by a line terminated

with a circle). A transition that has an inhibit arc as an input cannot take place if the

169

state from which the inhibit arc emanates is marked.

In the Petri net for BR, the inhibit arc is used so that the network ‘chooses’ between

the path which corresponds to a 1 bit being read from DT, and the path which corresponds

to a 0 bit being read from DT. DT.Bn refers to the pin of DT that is currently adjacent

to BR and DTx refers to a state of DT in which DT.Bn is in a raised position representing

the binary digit 1.

Figure 6.34. Petri net for BR.

6.3.4.3 Selection mechanism SL

Figure 6.35 shows the mechanism that selects the second of two positions for a given state

on the program plane, if it is activated by BR. Consider the sentence: ‘If the Turing

machine is in state q and encounters a 0, then do ..., otherwise if it encounters a 1 then

do ...’. The SL mechanism is the implementation of the word ‘otherwise’ in this sentence.

Figure 6.36 shows the Petri net for the SL mechanism.

170

Figure 6.35. The SL mechanism for conditionally moving the program plane.

171

Figure 6.36. Petri net for SL.

6.3.4.4 Condition Action mechanism CA

After the Selection Mechanism SL has ensured that the correct part of the current state

on the program plane PP is in the right place, the CA mechanism interrogates that place

on PP to work out whether to write a 1 or a 0 onto the data tape DT, and whether to

move DT backwards or forwards.

Figures 6.37 and 6.38 show the CA mechanism. Basically it consists of two rods, one

rod (labelled B) for determining the state of the ‘Write a 1’ bit on the program plane.

The other rod (labelled A) for determining the state of the ‘Advance the tape’ bit on the

program plane. Each rod is pressed against the program plane, and the corresponding

action is triggered.

Figure 6.39 shows the Petri net for the CA. The Petri net is complex because the

mechanism consists of three main constructs - the two rods A and B, and a construct

G that is responsible for moving rod B back to its initial position once PP has been

interrogated. Some arcs on the Petri net that would show dependencies between the

three loops in figure 6.39 have been omitted to avoid clutter, since they do not affect the

behaviour of the net.

6.3.4.5 Conditional Tape Moving mechanism CTM

Figure 6.40 shows the CTM. This mechanism is triggered by the CA when the program

plane PP indicates that the data tape DT is to be moved. The CTM moves DT 6 units

172

Figure 6.37. The CA mechanism that performs actions depending on information encoded on
the program plane.

backwards, so that between them CTM and UTM (see the next subsection) move the DT

either 3 units backwards or 3 units forwards.

Figure 6.41 shows the Petri net for the CTM.

6.3.4.6 Unconditional Tape Moving mechanism UTM

Figure 6.42 shows the UTM. This mechanism is triggered by the sequencer to move the

DT 3 units forwards.

Figure 6.43 shows the Petri net for the UTM.

6.3.4.7 Sequencer SQ

Figures 6.44 and 6.45 show the Sequencer SQ which is responsible for activating several

other mechanisms: BR, CA, PM and UTM.

It can be seen that SQ is essentially a track A along which a construct B moves. In

several places B encounters other constructs (not shown in figures 6.44 and 6.45) and

activates the mechanisms to which they belong. Figure 6.46 shows the Petri net for SQ.

173

Figure 6.38. A different view of the CA mechanism

Figure 6.39. Petri net for CA.

174

Figure 6.40. The CTM mechanism

Figure 6.41. Petri net for CTM.

175

Figure 6.42. The UTM mechanism.

Figure 6.43. Petri net for UTM.

176

Figure 6.44. The SQ mechanism.

Figure 6.45. A different view of the SQ mechanism.

177

Figure 6.46. Petri net for SQ.

178

6.3.4.8 Plane Moving mechanism PM

Figures 6.47 and 6.48 show the plane moving mechanism PM. This mechanism gets acti-

vated by SQ after all actions related to reading and acting on information encoded at the

current position of the program plane PP have finished. The mechanism tracks paths on

the program plane PP that lead from the portion of PP that has just been examined to

another state position on PP.

Figure 6.47. The PM mechanism.

Figure 6.49 shows the Petri net for PM. To avoid clutter in this diagram, not all PP

states that have arcs leading to transitions are shown.

179

Figure 6.48. A different view of the PM mechanism.

180

Figure 6.49. Petri net for PM.

6.3.4.9 Trigger mechanism TR

Figure 6.50 shows the trigger mechanism TR that starts the sequencer when the program

plane PP reaches a state position.

Figure 6.50. The TR mechanism.

Figure 6.51 shows the Petri net for TR.

181

Figure 6.51. Petri net for TR.

6.3.4.10 Program Plane PP

Figure 6.52 shows a portion of the program plane. This corresponds to a single state in

the abstract Turing machine.

Figure 6.52. The PP mechanism.

The part labelled A is the part that activates the trigger mechanism TR which in turn

activates the sequencer SQ when a state position is reached. The pair of parts labelled B

correspond to the two bits of information needed to tell the Turing machine what to do

when it encounters a 0 on the data tape DT. Similarly, the pair of parts labelled C tell the

Turing machine what to do when it encounters a 1 on the data tape. For B and C, a part

p with p.main pointing West towards the body of the Turing machine and p.secondary

pointing North represents 1, and a part in any other legal orientation represents 0. In

both B and C, the first (i.e. back-most) of the two bits of information tells the machine

whether to move DT (1) or not (0). The second of the two bits tells the machine whether

to write a 1 or a 0 onto DT. The paths labelled D and E are the paths that the plane

moving mechanism PM tracks when leaving this state for another state. Which path PM

182

follows depends on whether a 0 or a 1 was encountered on DT.

Figure 6.53 shows the corner of a track in PP. This figure should be examined in

conjunction with the Petri net for PM in figure 6.49 to see how PM and PP negotiate a

corner.

Figure 6.53. The PP mechanism.

Figures 6.54 and 6.55 show partial Petri nets for the program plane PP. (The complete

Petri net would be large and not instructive, so is omitted).

Figure 6.54. Petri net for PP. PP being moved by PM.

183

Figure 6.55. Petri net for PP showing the action of SL on PP.

6.3.5 Summary

As it stands, this design would not be suitable for use in the SRPC of Chapter 5 because

it contains mechanisms made from disconnected structures which would fall apart when

the SRPC moved. It also takes a very long time to carry out a simple computation.

An SRPC could not be made using only the part type used in this section because

there is no means of joining parts together. This could be solved by altering the laws of

the CBlocks3D environment so that if two parts are pushed in opposite directions they

automatically become connected. With this modification, whether an SRPC could be

made using a single part type is an open question.

184

Chapter 7

Discussion and Conclusion

In Chapter 2 it was shown that previous work on self-replicating programmable con-

structors (SRPC) has focused either on highly abstract systems in cellular automata

environments, or on simplified physical systems with either complex parts or a limited

constructional capability.

Chapter 3 demonstrated the feasibility of simulating self-replicating systems in kine-

matic environments that lie in the largely unexplored region between cellular automata

and physical systems. Work from Chapter 3 has been published in references [60] and

[61].

The CBlocks3D environment described in Chapter 4 is a realisation of the kinematic

system proposed by von Neumann [71]. This environment can be reasoned about with the

same ease as cellular automata, but also supports concepts of motion and connectivity.

Although the CBlocks3D environment has features which distinguish it from cellular

automata, section 4.4.1 shows how the Hashlife algorithm [25] for efficiently simulating

certain classes of cellular automata patterns can be adapted and used to simulate struc-

tures in the CBlocks3D environment.

The design given in Chapter 5 is the first demonstration that it is possible to devise an

SRPC in a kinematic simulation environment that supports part types designed to be as

simple as possible. The problem of classifying an unknown part using mechanisms made

only from the types of part to be classified has been solved in this environment and is

published in reference [64].

The SRPC has been simulated in full for a single replication cycle and the resulting

child machine has also been simulated for a single replication cycle. The child machine

and the grandchild machine were compared and found to be identical. After completing a

replication cycle, the SRPC loops back to the beginning of its construction program and

186

begins constructing another child machine.

A control unit architecture supporting the execution of a linear sequence of instruc-

tions, with subroutines for frequently used subsequences, was shown to be sufficient for

enabling the SRPC to contain within its memory the instructions needed for constructing

a duplicate machine.

The number of parts in the machine (59,615) and the complexity of the set of part

types used provide some kind of upper bound for machine size and part complexity for

machines with equivalent functionality in a three dimensional discrete kinematic space.

Chapter 6 outlines an approach by which the number of part types might be further

reduced by using kinematic information processing mechanisms. Work from Chapter 6

has been published in references [62] and [63].

Figure 7.1 shows the graph introduced at the beginning of Chapter 2. The large blue

star on this graph shows how the design from Chapter 5 moves closer towards region G

from the direction of abstract automata towards physical realism.

Figure 7.1. Graph showing this work in relation to region G.

187

7.1 Limitations

This section examines some of the limitations of the work described in this thesis and

suggests ways that these limitations can be overcome. In many cases these limitations

lead to further unanswered questions that may be the subject of future work.

7.1.1 Construction program design

The sequence of instructions that the SRPC of Chapter 5 executes in order to construct

another machine was written manually. For complex constructions requiring lengthy con-

struction programs this is a laborious process. It may be possible to write software to

fully or partially automate the process. This software would ideally take a description of

a machine to be constructed and translate it into the sequence of construction operations

required to construct the machine.

For structures that are smaller than the operating envelope of the construction arm,

that have no special connectivity requirements and which do not contain more parts

than can be stored in all of the storage mechanisms, this translation operation should be

straightforward. For structures that are larger than this, or that have complex connectivity

requirements (such as the call register of Figure 5.37 and the construction arm of section

5.7), and also for structures that require complex signal patterns (such as the memory

address counter of Figure 5.33), or where the number of any single part type exceeds the

capacity of a storage mechanism, the translation operation would be more difficult.

If the general translation task proves to be intractable then some kind of compromise

could be reached in which a piece of software produces a construction program that ignores

any connectivity issues, leaves all signal loops empty and ignores any requirement to collect

new parts when a storage mechanism is empty. A human programmer could then refine

the program, taking these factors into account.

Just as compilers for programming languages can optimize the code that they pro-

duce, a program for automatically translating descriptions of structures into a sequence of

construction operations could carry out some optimizations automatically. For example,

it could decide which subsequences should be chosen as subroutines so as to minimise the

total number of instructions. It could also work out, for a given construction program,

whether the pattern of movement and placement followed by the construction head can be

rewritten so as to increase the number of common subsequences within the construction

program.

188

7.1.2 Arrangement of parts in the machine’s environment

The SRPC described in Chapter 5 requires that all of the parts that it will collect from

its environment be laid out in a line to the WEST of the input orifice of the detect

mechanism. If there are any other parts to the WEST of the body of the machine that

are not on this line then they could enter the body of the machine and interfere with its

operation.

To prevent parts from entering the machine a barrier could be placed at the WEST

end of the machine. This would not fully solve the problem of parts from the environment

disrupting the machine, however, because interactions within a build-up of random parts

against this barrier could cause unwanted motion to occur which could disrupt the oper-

ation of the machine. The barrier could be constructed from a plane of nor parts which

activate a plane of slide parts that would move any parts encountered to the edge of the

barrier so that they would not build up. Alternatively the activated slide parts on the

barrier could be arranged in such a way as to move any parts encountered into the input

orifice. Care would have to be taken to avoid situations in which the slide parts on the

barrier attempted to move several parts into the input orifice at the same time.

7.1.3 Finite machine size

Unlike the automata of von Neumann [70], Codd [14] and others in which the memory or

instruction tape of the automata are infinitely extensible, the SRPC described in Chapter

5 has a finite memory and therefore an upper limit on the size of the constructions that

it can construct.

Given that it was shown in Chapter 6 that a Turing machine can be embedded within

the CBlocks3D environment, it seems reasonable to suppose that an SRPC with an arbi-

trary sized memory could be implemented in the CBlocks3D environment.

The part storage areas of section 5.5 have a finite capacity, but there seems to be no

reason why they could not be redesigned so as to be infinitely extensible. If this were done

then the machine would never have to discard any parts that it encountered.

7.1.4 Synchronicity

The CBlocks3D environment is synchronous: all parts in the environment update at the

same instant. Many physical systems are not naturally synchronous. If synchronous

behaviour is required in a physical system then often a global clock must somehow be

distributed to every part of the system. For example, if synchronous behaviour is required

189

in a digital electronic circuit then every component that needs to be synchronised must

be fed a clock signal through a wire dedicated to this purpose.

Conventional cellular automata are also synchronous. Beginning with [45] some re-

searchers have explored how cellular automata behave if the assumptions about when

individual cells update their state are altered or removed altogether.

Similar investigations could be carried out for kinematic environments. However, kine-

matic environments in which the far end of a structure moves instantaneously when the

near end is pushed have a natural type of synchronicity that is an essential feature of the

system rather than a constraint that can be relaxed.

7.1.5 Construction arm limitations

During the early design of the SRPC described in Chapter 5 it was necessary to decide

whether to have a construction head fixed to the machine and move the whole machine

around in space in order to position the construction head (as was done in the machine

described in section 3.1.3) or whether to allow the construction head to move independently

of the rest of the machine. The latter option was chosen for the following reasons:

• It avoids potential movement conflicts. In the CBlocks3D environment all motion

is absolute and so a moving mechanism cannot have any internal movement as it

moves. If the whole SRPC moved in order to move the construction head then it

would be necessary to make sure that no mechanisms containing moving parts were

active at the time that the machine moved.

• It simplifies part collecting. If the machine does not move around when it is con-

structing, then parts can be lined up in front of the input orifice of the detect

mechanism knowing that the position of this orifice on the NORTH-SOUTH and

FRONT -BACK axes will not change. If the whole machine were able to move

around then it would be necessary to work out in advance where the machine would

be when it next needed to collect parts from its environment in order to make sure

that parts were in the correct location.

• Initially it was hoped that the machine would eventually have an extruding brick

type architecture as described in section 14.3.2 of reference [19] in which the child

machine emerges from an orifice in the parent machine. In order for this to be

possible the construction head must be able to move internally within the parent

machine. Implementing this type of architecture proved to be beyond the scope of

190

this thesis but the construction head arrangement had already been fixed by the

time that this was realized.

None of these reasons are insurmountable. Having a fixed construction head and a

moving machine would simplify the design slightly and would probably make the transla-

tion task described in section 7.1.1 easier.

7.2 Future work

7.2.1 Variations on the environment

Chapter 3 described two environments supporting similar types of part. These environ-

ments differed mainly in the type of space that the parts were embedded in. It is interesting

to consider whether the result of Chapter 5 can be recapitulated in a continuous space

environment. Problems of positioning and orientation are likely to be more difficult in a

continuous space environment, as was found for the environment of section 3.2.

7.2.2 Kinematic computing

As was discussed in Chapter 6, the embodiment of computing machines in mechanical

or kinematic environments is a relatively unexplored area of research. Traditionally the

process of implementing a computing device in the physical world begins with an abstract

logical description of the device to be implemented. Physical processes are then sought

that can be made to behave in the same way as the abstract description. Stepney [59]

advocates a different approach in which systems suspected of having behaviour rich enough

to support complex dependencies between inputs and outputs are examined for intrinsic

behaviour that can be used to directly carry out a computation.

The two computing schemes described in Chapter 6 show that kinematic automata

are rich enough to be used for this kind of investigation.

7.2.3 Physical implementation

Although it was stated in section 3.3 that this thesis would not attempt to make a simu-

lation environment that relates directly to the physical world, one of the goals that this

research is motivated by is that of making a physical SRPC. Therefore it is natural to

consider whether the part types used in the CBlocks3D model can actually be built and

whether they can be made to behave in the way described in Chapter 4.

191

There are some physical environments in which at least some of the functions listed

in Table 3.6 on page 63 can be implemented very simply. Below are speculations on two

different systems.

7.2.3.1 Components mounted on floating discs

Consider discs floating on the surface of a liquid with an electronic component mounted on

each disc. Metal terminals around the edges of discs serve to connect components together.

Capillary forces cause discs to attract one another and stick together. The discs will tend

to coalesce into hexagonally packed arrangements. Adjacent discs behave as though there

is a bond between them. Terminals in contact form a conductive path between two discs

along which signals can propagate. Circuits can be made from collections of discs. A

strong magnetic field could permeate the environment so that inductors could be used to

generate forces on discs which could be harnessed to propel structures across the surface

of the liquid.

7.2.3.2 Fluidic logic

A single piece of moulded plastic with no solid moving parts can function as a fluidic logic

gate. The working fluid itself is the only moving part. The shape of the plastic causes

the fluid inside it to become a logic gate when the correct conditions are applied. An

introduction to fluidic logic can be found in reference [43].

It may be possible to make fluidic logic components that sit above an air-table, where

the jets of air are arranged in a square lattice. The jets of air could serve both to keep

the components aligned to the lattice and to drive the logic within them.

As well as being able to carry out Boolean operations, it is possible to imagine that

jets of air under the control of some components could cause other components on the

air-table to conditionally attract or repel each other. It is conceivable that all of the

functions listed in table 3.6 on page 63 could be implemented using fluidic components.

7.3 Concluding remarks

An intangible result of this work, which is a consequence of working on the systems

described in this thesis, is the experience and insight that I have gained about SRPCs

and about kinematic environments. I feel fortunate to have the same enthusiasm for the

subject that I had when I began this work, and I hope to use the insight that I have gained

to continue this research in some of the directions outlined above.

192

Appendix A

CBlocks3D Implementation

Below is a C++ program for simulating the CBlocks3D environment. The algorithm is

based on ideas from the Hashlife algorithm described by Gosper in [25].

#include <assert.h>

typedef enum {empty,wire,nor,slide,fuse,unfuse,rotate} blockType;

typedef enum {north,east,south,west,front,back,none} direction;

typedef enum {northmask = 1, eastmask = 2, southmask = 4, westmask = 8,

frontmask = 16, backmask = 32} directionMasks;

typedef struct

{

int x,y,z;

} vector;

#define BLOCK_BITS 18

// The bits used in block are as follows:

// 0-2 block type

// 3-7 orientation

// 8 output

// 9-14 connectivity

// 15-17 move propagation direction (direction+1)

//

// 0 represents an empty cell

typedef unsigned block;

194

#define EMPTY_FLAG 1

#define NOTPROP_FLAG 2

#define PROPSTATIC_FLAG 4

#define NOTACTIVE_FLAG 8

#define VISITED_FLAG 128

#define CALCINDEX_CALC 0

#define CALCINDEX_PROP 1

#define CALCINDEX_DOMOVE 2

#define CALCINDEX_ACTIVE 3

#define CALCINDEX_CALC2 4

typedef struct otNode

{

unsigned char level,flags;

otNode *calc[5];

union

{

block leaf;

struct otNode *children[2][2][2];

} u;

struct otNode *next; // for use in hash and also in freeList

} otNode;

typedef otNode *(*calcFuncPtr)(int x, int y, int z, otNode *o);

vector dirVectorLookup[6] =

{

{0,1,0},

{1,0,0},

{0,-1,0},

{-1,0,0},

{0,0,1},

{0,0,-1},

};

direction opposite[6] =

195

{

south,west,north,east,back,front

};

// For looking up what frontDir should be, given northDir and eastDir

direction frontDirLookup[6][6] =

{

{none,front,none,back,west,east},

{back,none,front,none,north,south},

{none,back,none,front,east,west},

{front,none,back,none,south,north},

{east,south,west,north,none,none},

{west,north,east,south,none,none},

};

// given a 5 bit orientation value, this table stores the

// northDir, eastDir and frontDir

direction dirLookup[24][3] =

{

{north,east,front}, // 0

{north,west,back},

{north,front,west},

{north,back,east},

{east,north,back}, // 4

{east,south,front},

{east,front,north},

{east,back,south},

{south,east,back}, //8

{south,west,front},

{south,front,east},

{south,back,west},

{west,north,front}, // 12

{west,south,back},

{west,front,south},

{west,back,north},

{front,north,east}, // 16

{front,east,south},

{front,south,west},

{front,west,north},

{back,north,west}, // 20

196

{back,east,north},

{back,south,east},

{back,west,south},

};

unsigned char makeOrientation[6][6] =

{

{0,0,0,1,2,3},

{4,0,5,0,6,7},

{0,8,0,9,10,11},

{12,0,13,0,14,15},

{16,17,18,19,0,0},

{20,21,22,23,0,0},

};

unsigned char rotateLookup[24][6];

otNode *eg;

#define ALLOC_TABLE_SIZE 45000000

#define GC_THRESHHOLD 100000

otNode *allocTable;

otNode *freeList;

unsigned freeCount;

// First 100 elements of hash table are empty nodes

#define HASH_SIZE 44999991

#define EMPTY_LIST_SIZE 100

otNode **hashTable;

unsigned lookupOrientationValue(direction p, direction s)

{

for(unsigned i = 0; i<24; i++)

{

if (dirLookup[i][0] == p && dirLookup[i][1] == s)

{

return i;

}

}

197

return 0;

}

unsigned getBlockType(block b) {return b&0x00000007;}

void setBlockType(block *b, unsigned tp) {*b = (*b & ~0x00000007)|tp;}

unsigned getOrientation(block b) {return (b&0x000000f8)>>3;}

void setOrientation(block *b, unsigned orientation)

{*b = (*b & ~0x000000f8)|(orientation<<3);}

unsigned getOutput(block b) {return (b&0x00000100)>>8;}

void setOutput(block *b, unsigned output)

{*b = (*b & ~0x00000100)|(output<<8);}

unsigned getConnect(block b) {return (b&0x00007e00)>>9;}

void setConnect(block *b, unsigned connect)

{*b = (*b & ~0x00007e00)|(connect<<9);}

unsigned getMovedir(block b) {return (b&0x00038000)>>15;}

void setMovedir(block *b, unsigned d) {*b= (*b & ~0x00038000)|(d<<15);}

void alterConnect(block *b, unsigned d, bool c)

{

if (c)

*b = *b | (1<<(d+9));

else

*b = *b & ~(1<<(d+9));

}

void markTree(otNode *o)

{

if (o && !(o->flags & VISITED_FLAG))

{

o->flags |= VISITED_FLAG;

if (o->level != 0)

{

markTree(o->calc[0]);

markTree(o->calc[1]);

198

markTree(o->calc[2]);

markTree(o->calc[3]);

markTree(o->calc[4]);

markTree(o->u.children[0][0][0]);

markTree(o->u.children[0][0][1]);

markTree(o->u.children[0][1][0]);

markTree(o->u.children[0][1][1]);

markTree(o->u.children[1][0][0]);

markTree(o->u.children[1][0][1]);

markTree(o->u.children[1][1][0]);

markTree(o->u.children[1][1][1]);

}

}

}

void removeUnmarked(void)

{

for(unsigned i = 0; i<HASH_SIZE; i++)

{

otNode **ptrPtr = &(hashTable[i]);

otNode *ptr = *ptrPtr;

while(ptr)

{

if (ptr->flags & VISITED_FLAG)

{

ptr->flags &= ~VISITED_FLAG;

ptrPtr = &(ptr->next);

}

else

{

*ptrPtr = ptr->next;

destroyNode(ptr);

}

ptr = *ptrPtr;

}

199

}

}

// Garbage collect by traversing the tree, including all calc nodes, marking

// everything as visited, then going through the hash table and removing

// anything that is not visited

void garbageCollect(otNode *o)

{

markTree(o);

removeUnmarked();

}

void initTables(void)

{

allocTable = new otNode[ALLOC_TABLE_SIZE];

hashTable = new otNode *[HASH_SIZE];

for(unsigned i = 0; i<HASH_SIZE; i++)

{

hashTable[i] = NULL;

}

for(unsigned i = 0; i<ALLOC_TABLE_SIZE-1; i++)

{

allocTable[i].next = &(allocTable[i+1]);

}

allocTable[ALLOC_TABLE_SIZE-1].next = NULL;

freeList = &allocTable[0];

freeCount = ALLOC_TABLE_SIZE;

for(unsigned i = 0; i<24; i++)

{

for(unsigned a = 0; a<6; a++)

{

if (a == dirLookup[i][0])

{

rotateLookup[i][a] =

makeOrientation[dirLookup[i][0]][opposite[dirLookup[i][2]]];

200

}

else if (a==opposite[dirLookup[i][0]])

{

rotateLookup[i][a] = makeOrientation[dirLookup[i][0]][dirLookup[i][2]];

}

else if (a == dirLookup[i][1])

{

rotateLookup[i][a] = makeOrientation[dirLookup[i][2]][dirLookup[i][1]];

}

else if (a==opposite[dirLookup[i][1]])

{

rotateLookup[i][a] =

makeOrientation[opposite[dirLookup[i][2]]][dirLookup[i][1]];

}

else if (a == dirLookup[i][2])

{

rotateLookup[i][a] =

makeOrientation[opposite[dirLookup[i][1]]][dirLookup[i][0]];

}

else if (a==opposite[dirLookup[i][2]])

{

rotateLookup[i][a] =

makeOrientation[dirLookup[i][1]][opposite[dirLookup[i][0]]];

}

}

}

}

unsigned hashFunction(otNode *o)

{

if (o->flags & EMPTY_FLAG)

{

return o->level;

}

else if (o->level == 0)

{

return o->u.leaf+EMPTY_LIST_SIZE+

((o->flags&PROPSTATIC_FLAG)?(1<<BLOCK_BITS):0);

}

else

201

{

return ((((unsigned)(o->u.children[0][0][0]))<<0) +

(((unsigned)(o->u.children[0][0][1]))<<1) +

(((unsigned)(o->u.children[0][1][0]))<<2) +

(((unsigned)(o->u.children[0][1][1]))<<3) +

(((unsigned)(o->u.children[1][0][0]))<<4) +

(((unsigned)(o->u.children[1][0][1]))<<5) +

(((unsigned)(o->u.children[1][1][0]))<<6) +

(((unsigned)(o->u.children[1][1][1]))<<7))

%(HASH_SIZE-EMPTY_LIST_SIZE-(1<<(BLOCK_BITS+1)))+

EMPTY_LIST_SIZE+(1<<(BLOCK_BITS+1));

}

}

unsigned hashFunctionBlock(block b, unsigned char flags)

{

return b+EMPTY_LIST_SIZE+((flags&PROPSTATIC_FLAG)?(1<<BLOCK_BITS):0);

}

otNode *addToHash(otNode *o, unsigned index)

{

o->next = hashTable[index];

return hashTable[index] = o;

}

bool compare(otNode *o1, otNode *o2)

{

if (o1->level == o2->level)

{

if (o1->level == 0)

{

return o1->u.leaf == o2->u.leaf &&

((o1->flags & PROPSTATIC_FLAG) == (o2->flags & PROPSTATIC_FLAG));

}

else if ((o1->flags & EMPTY_FLAG) || (o2->flags & EMPTY_FLAG))

{

return (o1->flags & EMPTY_FLAG) && (o2->flags & EMPTY_FLAG);

}

else

{

202

return !memcmp(&o1->u,&o2->u,8*sizeof(otNode *));

}

}

else

{

return false;

}

}

otNode *hashLookup(otNode *o, unsigned index)

{

otNode *ptr = hashTable[index];

while(ptr)

{

if (compare(o,ptr))

{

return ptr;

}

ptr = ptr->next;

}

return NULL;

}

#define hashLookupBlock(b,flags,index) hashTable[index];

// Check whether a newly created node is already in the hash

// if so then destroy o and return the one from the hash

// otherwise add o to the hash and return it

otNode *hashCheck(otNode *o)

{

unsigned index = hashFunction(o);

otNode *tmp = hashLookup(o,index);

if (tmp != NULL)

{

destroyNode(o);

203

return tmp;

}

else

{

return addToHash(o,index);

}

}

otNode *hashCheckBlock(block b, unsigned char flags)

{

unsigned index = hashFunctionBlock(b,flags);

otNode *tmp = hashLookupBlock(b,flags,index);

if (tmp != NULL)

{

return tmp;

}

else

{

otNode *o = createNode(0,false,false);

o->u.leaf = b;

o->flags = flags;

return addToHash(o,index);

}

}

block getBlockAtLocation(otNode *o, int x, int y, int z)

{

if (o->flags & EMPTY_FLAG)

return 0;

switch(o->level)

{

case 0:

return o->u.leaf;

case 1:

return o->u.children[x][y][z]->u.leaf;

case 2:

204

return o->u.children[x/2][y/2][z/2]->u.children[x&1][y&1][z&1]->u.leaf;

default:

{

int d = (1<<(o->level-1));

int xo = !(x<d);

int yo = !(y<d);

int zo = !(z<d);

return getBlockAtLocation(

o->u.children[xo][yo][zo],

x%d,

y%d,

z%d);

}

break;

}

}

#define GETBLOCK_L2(o,x,y,z) \

(o->u.children[(x)>>1][(y)>>1][(z)>>1]-> \

u.children[(x)&1][(y)&1][(z)&1]->u.leaf)

#define GETFLAGS_L2(o,x,y,z) \

(o->u.children[(x)>>1][(y)>>1][(z)>>1]-> \

u.children[(x)&1][(y)&1][(z)&1]->flags)

// Make a mutable copy of the subtree in which the block resides, then

// make the change

otNode *setBlockAtLocation(otNode *o, int x, int y, int z, block b)

{

otNode *rval = duplicateNode(o);

rval->calc[0] = rval->calc[1] = rval->calc[2] = rval->calc[3] = NULL;

rval->next = NULL;

switch(o->level)

{

case 0:

rval->u.leaf = b;

if (getBlockType(b)==empty)

rval->flags = EMPTY_FLAG|NOTPROP_FLAG|PROPSTATIC_FLAG|NOTACTIVE_FLAG;

205

else

rval->flags = NOTPROP_FLAG|PROPSTATIC_FLAG|NOTACTIVE_FLAG;

break;

default:

{

int d = (1<<(o->level-1));

int xo = ((x<d)?0:1);

int yo = ((y<d)?0:1);

int zo = ((z<d)?0:1);

rval->u.children[xo][yo][zo] = setBlockAtLocation(

rval->u.children[xo][yo][zo],

x-xo*d,

y-yo*d,

z-zo*d,

b);

if (getBlockType(b)!=empty)

rval->flags &= ~EMPTY_FLAG;

}

break;

}

return hashCheck(rval);

}

void destroyNode(otNode *o)

{

o->next = freeList;

freeList = o;

freeCount++;

}

otNode *getEmptyNode(unsigned level);

otNode *createNode(unsigned level, bool populated, bool lookupEmpty)

{

otNode *rval = freeList;

freeList = freeList->next;

206

freeCount--;

rval->level = level;

rval->calc[0] = rval->calc[1] = rval->calc[2] =

rval->calc[3] = rval->calc[4] = NULL;

rval->flags = EMPTY_FLAG|NOTPROP_FLAG|PROPSTATIC_FLAG|NOTACTIVE_FLAG;

rval->next = NULL;

switch(level)

{

case 0:

rval->u.leaf = 0;

break;

default:

{

for(int i = 0; i<2; i++)

for(int j = 0; j<2; j++)

for(int k = 0; k<2; k++)

{

if (populated)

{

if (lookupEmpty)

{

rval->u.children[i][j][k] = getEmptyNode(rval->level-1);

}

else

{

rval->u.children[i][j][k] =

createNode(rval->level-1,populated,lookupEmpty);

}

}

else

{

rval->u.children[i][j][k] = NULL;

}

}

}

break;

}

207

return rval;

}

// create a duplicate node with everything the same

otNode *duplicateNode(otNode *o)

{

otNode *rval = createNode(o->level,false,false);

*rval = *o;

return rval;

}

otNode *getEmptyNode(unsigned level)

{

if (hashTable[level] != NULL)

return hashTable[level];

else

{

otNode *rval = createNode(level,true,true);

hashTable[level] = rval;

return rval;

}

}

// The PROPSTATIC_FLAG is used in a different way in leaf nodes to other flags

// In leaf nodes, it is used simply to return a value from a process function

otNode *processBlockDoMove(int x, int y, int z, otNode *o)

{

block b = GETBLOCK_L2(o,x,y,z);

unsigned char flags;

if (getMovedir(b))

{

b = 0;

}

for(unsigned i = 0; i<6; i++)

{

208

vector p = dirVectorLookup[i];

block bn = GETBLOCK_L2(o,x+p.x,y+p.y,z+p.z);

if (getMovedir(bn))

{

if (getMovedir(bn)-1 == opposite[i])

{

b = bn;

setMovedir(&b,0);

}

}

}

flags = NOTPROP_FLAG|NOTACTIVE_FLAG|PROPSTATIC_FLAG;

if (b==0)

{

flags |= EMPTY_FLAG;

}

return hashCheckBlock(b,flags);

}

otNode *processBlockProp(int x, int y, int z, otNode *o)

{

block b = GETBLOCK_L2(o,x,y,z);

unsigned char flags;

if (b==0)

{

flags = EMPTY_FLAG|NOTPROP_FLAG|NOTACTIVE_FLAG|PROPSTATIC_FLAG;

return hashCheckBlock(b,flags);

}

if (getMovedir(b))

{

flags = NOTACTIVE_FLAG|PROPSTATIC_FLAG;

return hashCheckBlock(b,flags);

}

209

for(unsigned i = 0; i<6; i++)

{

vector p = dirVectorLookup[i];

block bn = GETBLOCK_L2(o,x+p.x,y+p.y,z+p.z);

if (getMovedir(bn))

{

if (getMovedir(bn)-1 == opposite[i] ||

((getConnect(b) & (1<<i)) && (getConnect(bn) & (1<<opposite[i]))))

{

setMovedir(&b,getMovedir(bn));

}

}

}

if (getMovedir(b) == 0)

{

flags = NOTPROP_FLAG | NOTACTIVE_FLAG | PROPSTATIC_FLAG;

return hashCheckBlock(b,flags);

}

else

{

flags = NOTACTIVE_FLAG;

return hashCheckBlock(b,flags);

}

}

#define CHECK_FUSEUNFUSE(xo,yo,zo,pri,sec) \

{ \

block bi = GETBLOCK_L2(o,x+xo,y+yo,z+zo); \

unsigned orientationi = getOrientation(bi); \

unsigned tpi = getBlockType(bi); \

if ((tpi == fuse || tpi == unfuse) && getOutput(bi)) \

{ \

if (dirLookup[orientationi][0] == pri && \

dirLookup[orientationi][1] == sec) \

{ \

vector pc = dirVectorLookup[opposite[sec]]; \

210

block bc = GETBLOCK_L2(o,x+pc.x,y+pc.y,z+pc.z); \

\

if (getBlockType(bc) != empty) \

alterConnect(&b,opposite[sec],tpi==fuse); \

} \

if (dirLookup[orientationi][0] == sec && \

dirLookup[orientationi][1] == pri) \

{ \

vector pc = dirVectorLookup[opposite[pri]]; \

block bc = GETBLOCK_L2(o,x+pc.x,y+pc.y,z+pc.z); \

\

if (getBlockType(bc) != empty) \

alterConnect(&b,opposite[pri],tpi==fuse); \

} \

} \

}

otNode *processBlockActive(int x, int y, int z , otNode *o)

{

block b = GETBLOCK_L2(o,x,y,z);

unsigned char flags;

unsigned tp = getBlockType(b);

unsigned orientation = getOrientation(b);

if (tp != empty)

{

if (tp == slide || tp == fuse || tp == unfuse || tp == rotate)

{

setOutput(&b,0);

}

flags = NOTPROP_FLAG|NOTACTIVE_FLAG|PROPSTATIC_FLAG;

for(unsigned i = 0; i<6; i++)

{

vector p = dirVectorLookup[i];

block bi = GETBLOCK_L2(o,x+p.x,y+p.y,z+p.z);

if (getBlockType(bi) == slide && getOutput(bi) &&

211

dirLookup[getOrientation(bi)][0] == opposite[i])

{

setMovedir(&b,dirLookup[getOrientation(bi)][1]+1);

flags = NOTACTIVE_FLAG;

}

if (getBlockType(bi) == rotate && getOutput(bi) &&

dirLookup[getOrientation(bi)][0] == opposite[i])

{

setOrientation(&b,rotateLookup[orientation][opposite[i]]);

flags = NOTACTIVE_FLAG;

}

if ((getBlockType(bi) == fuse || getBlockType(bi) == unfuse)

&& getOutput(bi) && dirLookup[getOrientation(bi)][0] == opposite[i])

{

vector pc = dirVectorLookup[dirLookup[getOrientation(bi)][1]];

block bc = GETBLOCK_L2(o,x+pc.x,y+pc.y,z+pc.z);

if (getBlockType(bc) != empty)

{

alterConnect(&b,dirLookup[getOrientation(bi)][1],

getBlockType(bi)==fuse);

}

}

}

CHECK_FUSEUNFUSE(-1,-1, 0,east,north)

CHECK_FUSEUNFUSE(1,-1, 0,west,north)

CHECK_FUSEUNFUSE(-1, 1, 0,east,south)

CHECK_FUSEUNFUSE(1, 1, 0,west,south)

CHECK_FUSEUNFUSE(-1, 0,-1,east,front)

CHECK_FUSEUNFUSE(1, 0,-1,west,front)

CHECK_FUSEUNFUSE(-1, 0, 1,east,back)

CHECK_FUSEUNFUSE(1, 0, 1,west,back)

CHECK_FUSEUNFUSE(0,-1,-1,front,north)

CHECK_FUSEUNFUSE(0, 1,-1,front,south)

CHECK_FUSEUNFUSE(0,-1, 1,back,north)

CHECK_FUSEUNFUSE(0, 1, 1,back,south)

}

212

else

{

flags = EMPTY_FLAG|NOTPROP_FLAG|PROPSTATIC_FLAG|NOTACTIVE_FLAG;

}

return hashCheckBlock(b,flags);

}

otNode *processBlock(int x, int y, int z, otNode *o)

{

block b = GETBLOCK_L2(o,x,y,z);

unsigned char flags;

unsigned tp = getBlockType(b);

unsigned orientation = getOrientation(b);

if (!(o->flags & NOTACTIVE_FLAG))

{

return hashCheckBlock(b,GETFLAGS_L2(o,x,y,z));

}

{

switch(tp)

{

case slide:

case fuse:

case unfuse:

case rotate:

{

vector p = dirVectorLookup[dirLookup[orientation][0]];

block bp = GETBLOCK_L2(o,x+p.x,y+p.y,z+p.z);

if (getBlockType(bp) != empty)

{

block bi = GETBLOCK_L2(o,x-p.x,y-p.y,z-p.z);

if (getOutput(bi) &&

((getBlockType(bi) == wire &&

dirLookup[getOrientation(bi)][0] !=

opposite[dirLookup[orientation][0]]) ||

213

(getBlockType(bi) == nor

&& dirLookup[getOrientation(bi)][0] == dirLookup[orientation][0])))

{

if (tp != fuse && tp != unfuse)

{

setOutput(&b,1);

flags = NOTPROP_FLAG|PROPSTATIC_FLAG;

}

else

{

vector po = dirVectorLookup[dirLookup[orientation][1]];

block bo = GETBLOCK_L2(o,x+p.x+po.x,y+p.y+po.y,z+p.z+po.z);

if (getBlockType(bo) != empty &&

((tp==fuse &&

!(getConnect(bp) & (1<<dirLookup[orientation][1]))) ||

(tp==unfuse &&

(getConnect(bp) & (1<<dirLookup[orientation][1]))))

)

{

setOutput(&b,1);

flags = NOTPROP_FLAG|PROPSTATIC_FLAG;

}

else

{

setOutput(&b,0);

flags = NOTPROP_FLAG|NOTACTIVE_FLAG|PROPSTATIC_FLAG;

}

}

}

else

{

setOutput(&b,0);

flags = NOTPROP_FLAG|NOTACTIVE_FLAG|PROPSTATIC_FLAG;

}

}

else

{

setOutput(&b,0);

flags = NOTPROP_FLAG|NOTACTIVE_FLAG|PROPSTATIC_FLAG;

214

}

}

break;

case wire:

{

vector p = dirVectorLookup[dirLookup[orientation][0]];

block bi = GETBLOCK_L2(o,x-p.x,y-p.y,z-p.z);

if (getOutput(bi) &&

((getBlockType(bi) == wire

&& dirLookup[getOrientation(bi)][0] !=

opposite[dirLookup[orientation][0]]) ||

(getBlockType(bi) == nor

&& dirLookup[getOrientation(bi)][0] == dirLookup[orientation][0])))

{

setOutput(&b,1);

}

else

{

setOutput(&b,0);

}

}

flags = NOTPROP_FLAG|NOTACTIVE_FLAG|PROPSTATIC_FLAG;

break;

case nor:

{

unsigned op = 1;

for(unsigned i = 0; i<6 && op; i++)

{

if (i != dirLookup[orientation][0])

{

vector p = dirVectorLookup[i];

block bi = GETBLOCK_L2(o,x+p.x,y+p.y,z+p.z);

if (getOutput(bi) &&

((getBlockType(bi) == wire

&& dirLookup[getOrientation(bi)][0] != i) ||

215

(getBlockType(bi) == nor

&& dirLookup[getOrientation(bi)][0] == opposite[i])))

{

op = 0;

}

}

}

setOutput(&b,op);

}

flags = NOTPROP_FLAG|NOTACTIVE_FLAG|PROPSTATIC_FLAG;

break;

default:

flags = EMPTY_FLAG|NOTPROP_FLAG|NOTACTIVE_FLAG|PROPSTATIC_FLAG;

break;

}

}

return hashCheckBlock(b,flags);

}

otNode *otLevel2NodeCalc(otNode *o, calcFuncPtr calcFunc)

{

otNode *rval = createNode(1,false,false);

for(int i = 0; i<2; i++)

for(int j = 0; j<2; j++)

for(int k = 0; k<2; k++)

{

rval->u.children[i][j][k] = calcFunc(i+1,j+1,k+1,o);

rval->flags = rval->flags & rval->u.children[i][j][k]->flags;

}

return hashCheck(rval);

}

otNode *populateGapNode(otNode *o, int i2, int j2, int k2, int i1, int j1, int k1)

{

otNode *rval = createNode(o->level-2,false,false);

216

for(int i = 0; i<2; i++)

for(int j = 0; j<2; j++)

for(int k = 0; k<2; k++)

{

int x = 1+i2*2+i1*2+i;

int y = 1+j2*2+j1*2+j;

int z = 1+k2*2+k1*2+k;

rval->u.children[i][j][k] =

o->u.children[(x&4)>>2][(y&4)>>2][(z&4)>>2]

->u.children[(x&2)>>1][(y&2)>>1][(z&2)>>1]

->u.children[x&1][y&1][z&1];

rval->flags = rval->flags & rval->u.children[i][j][k]->flags;

}

return hashCheck(rval);

}

otNode *makeTempChild(otNode *o, int i1, int j1, int k1)

{

otNode *rval = createNode(o->level-1,false,false);

for(int i = 0; i<2; i++)

for(int j = 0; j<2; j++)

for(int k = 0; k<2; k++)

{

rval->u.children[i][j][k] = populateGapNode(o,i1,j1,k1,i,j,k);

rval->flags = rval->flags & rval->u.children[i][j][k]->flags;

}

return hashCheck(rval);

}

otNode *makeIntermed(otNode *o, int i1, int j1, int k1)

{

otNode *rval = createNode(o->level-1,false,false);

217

for(int i=0;i<2;i++)

for(int j=0;j<2;j++)

for(int k=0;k<2;k++)

{

int x = i1+i;

int y = j1+j;

int z = k1+k;

rval->u.children[i][j][k] =

o->u.children[x>>1][y>>1][z>>1]

->u.children[x&1][y&1][z&1];

rval->flags = rval->flags & rval->u.children[i][j][k]->flags;

}

return hashCheck(rval);

}

otNode *makeInterChild(otNode **intermed,int i1, int j1, int k1)

{

otNode *rval = createNode((*intermed)->level+1,false,false);

for(int i=0;i<2;i++)

for(int j=0;j<2;j++)

for(int k=0;k<2;k++)

{

int x = i + i1;

int y = j + j1;

int z = k + k1;

rval->u.children[i][j][k] = *(intermed + 3*(3*x+y) + z);

rval->flags = rval->flags & rval->u.children[i][j][k]->flags;

}

return hashCheck(rval);

}

// returns a pointer to a node one level down and centred

otNode *otNodeCalc(otNode *o, calcFuncPtr calcFunc, unsigned calcIndex)

218

{

otNode *rval, *tmp;

if (o->calc[calcIndex] == NULL)

{

if (o->level==2)

{

o->calc[calcIndex] = otLevel2NodeCalc(o,calcFunc);

}

else if (calcIndex == CALCINDEX_CALC2 && (o->level==3 ||

o->level==4 || o->level==5))

{

unsigned nextCalcIndex = (o->level==3)?CALCINDEX_CALC:CALCINDEX_CALC2;

rval = createNode(o->level-1,false,false);

otNode *intermed[3][3][3];

for (int i=0; i<3; i++)

for(int j=0; j<3; j++)

for(int k=0; k<3; k++)

{

intermed[i][j][k] = makeIntermed(o,i,j,k);

intermed[i][j][k] =

otNodeCalc(intermed[i][j][k],calcFunc,nextCalcIndex);

}

for(int i=0; i<2; i++)

for(int j=0; j<2; j++)

for(int k=0; k<2; k++)

{

rval->u.children[i][j][k] = makeInterChild(&intermed[0][0][0],i,j,k);

rval->u.children[i][j][k] =

otNodeCalc(rval->u.children[i][j][k],calcFunc,nextCalcIndex);

rval->flags = rval->flags & rval->u.children[i][j][k]->flags;

}

o->calc[calcIndex] = hashCheck(rval);

}

else

{

219

rval = createNode(o->level-1,false,false);

for (int i=0; i<2; i++)

for(int j=0; j<2; j++)

for(int k=0; k<2; k++)

{

rval->u.children[i][j][k] = makeTempChild(o,i,j,k);

rval->u.children[i][j][k] =

otNodeCalc(rval->u.children[i][j][k],calcFunc,calcIndex);

rval->flags = rval->flags & rval->u.children[i][j][k]->flags;

}

o->calc[calcIndex] = hashCheck(rval);

}

return o->calc[calcIndex];

}

else

{

return o->calc[calcIndex];

}

}

// determine whether the universe needs to be expanded, and if so then do it

otNode *expandUniverse(otNode *o, bool testNeed)

{

bool doExpand;

if (testNeed && o->level >= 2)

{

doExpand = false;

for(int i = 0; i<2; i++)

for(int j = 0; j<2; j++)

for(int k = 0; k<2; k++)

for(int i1 = 0; i1 < 2; i1++)

for(int j1 = 0; j1<2; j1++)

for(int k1 = 0; k1<2; k1++)

{

if (i1 != 1-i || j1 != 1-j || k1 != 1-k)

220

{

if (!o->u.children[i][j][k]->

u.children[i1][j1][k1]->flags & EMPTY_FLAG)

{

doExpand = true;

}

}

}

}

else

{

doExpand = true;

}

if (doExpand)

{

otNode *rval = createNode(o->level+1,false,false);

rval->flags = o->flags;

for(int i = 0; i<2; i++)

for(int j = 0; j<2; j++)

for(int k = 0; k<2; k++)

{

otNode *tmp = createNode(o->level,true,true);

tmp->u.children[1-i][1-j][1-k] = o->u.children[i][j][k];

tmp->flags = o->u.children[i][j][k]->flags;

rval->u.children[i][j][k] = hashCheck(tmp);

}

return hashCheck(rval);

}

else

{

return o;

}

}

otNode *singleStep(otNode *eg, unsigned &iters)

{

221

bool doneNormal = true;

static int mode = 0;

static int modeCounter = 0;

do

{

doneNormal = false;

if (eg->flags & NOTPROP_FLAG)

{

if (eg->flags & NOTACTIVE_FLAG)

{

otNode *tmp;

if (mode == 0)

tmp = expandUniverse(

otNodeCalc(eg,processBlock,CALCINDEX_CALC2),false);

if (mode || !(tmp->flags & NOTACTIVE_FLAG))

{

eg = expandUniverse(otNodeCalc(eg,processBlock,CALCINDEX_CALC),false);

iters+=1;

}

else

{

eg = tmp;

iters+=8;

}

if (eg->flags & NOTACTIVE_FLAG)

{

modeCounter++;

doneNormal = true;

}

else

{

modeCounter = 0;

mode = 1;

}

222

if (modeCounter > 8) mode = 0;

}

else

{

eg = expandUniverse(

otNodeCalc(eg,processBlockActive,CALCINDEX_ACTIVE),false);

if (eg->flags & NOTPROP_FLAG)

{

doneNormal = true;

}

}

}

else

{

if (eg->flags & PROPSTATIC_FLAG)

{

eg = expandUniverse(

otNodeCalc(eg,processBlockDoMove,CALCINDEX_DOMOVE),false);

doneNormal = true;

}

else

{

eg = expandUniverse(

expandUniverse(

otNodeCalc(eg,processBlockProp,CALCINDEX_PROP),true),false);

}

}

if (freeCount < GC_THRESHHOLD)

{

garbageCollect(eg);

}

}

while(!doneNormal);

return eg;

}

Appendix B

Portions of the Construction

Program

B.1 Memory Module

This subroutine constructs a single memory module as described in section 5.8. This

listing includes all other subroutines that are called. The listing is 232 instruction words

long.

001 MemoryBlock: 019 WEST

002 020

003 ORIENT SE 021 CALL MemLayer1_3

004 SLI 022 CALL MemLayer1_3

005 ROT 023 CALL MemLayer1_3

006 FUS 024 CALL MemLayer1_3

007 UFS 025 CALL MemLayer1_3

008 CALL NorWest6 026

009 027 ORIENT SE

010 ORIENT BE 028 NOP

011 NOP 029 CALL DelStrip

012 CALL DelStrip 030

013 CALL MemSub1 031 ORIENT FE

014 ORIENT BE 032 NOP

015 EAST 033 CALL DelStrip

016 CALL NorWest6 034 CALL MemSub1

017 SOUTH 035 EAST

018 SOUTH 036 CALL DelWest6

224

037 075 NOP

038 CALL East6 076 CALL DelStrip

039 077

040 CALL WestWestBack 078 ORIENT NE

041 079 NOP

042 NORTH 080 CALL DelStrip

043 GATHER 081 ORIENT FE

044 CALL SouthNorthSouth 082 NOP

045 083 CALL MemSub1

046 CALL NorthSNSNSNS3 084 EAST

047 CALL NorthSNSNSNS3 085 CALL DelWest6

048 086

049 NORTH 087 SOUTH

050 CALL SouthNorthSouth 088 SOUTH

051 CALL SouthNorthSouth 089 WEST

052 090

053 WEST 091 MemLayer2:

054 NORTH 092

055 EAST 093 ORIENT SE

056 NORTH 094 NOP

057 CALL SouthNorthSouth 095 CALL DelStrip

058 096

059 FrontSouthSouth: 097 ORIENT BE

060 098 NOP

061 FRONT 099 CALL DelStrip

062 SOUTH 100 CALL MemSub1

063 SOUTH 101 ORIENT NE

064 102 EAST

065 RETURN 103 CALL DelWest6

066 104

067 MemLayer1_3: 105 WEST

068 106 CALL WestBackSouth

069 CALL MemLayer1 107 CALL NorthGatherNorthSouth

070 CALL MemLayer1 108

071 109 SOUTH

072 MemLayer1: 110

073 111 FrontEastSouth:

074 ORIENT SE 112

225

113 FRONT 151 NOP

114 EAST 152

115 SOUTH 153 DWD:

116 154

117 RETURN 155 DEL

118 156 WEST

119 DelStrip: 157 DEL

120 158

121 FRONT 159 RETURN

122 CALL East5 160

123 BACK 161 MemSub1:

124 162

125 DelWest6: 163 CALL DelStrip

126 164 CALL DelStrip

127 DEL 165 CALL DelStrip

128 WEST 166 CALL DelStrip

129 NOP 167 CALL DelStrip

130 NOP 168 EAST

131 169 SOUTH

132 DWDWDWDWD: 170 CALL ENN

133 171 CALL WestWestNorth

134 DEL 172

135 WEST 173 FrontEast5Back:

136 NOP 174

137 NOP 175 CALL FrontEast5

138 176 BACK

139 DWDWDWD: 177

140 178 RETURN

141 DEL 179

142 WEST 180 NorWest6:

143 NOP 181

144 NOP 182 NOR

145 183 WEST

146 DWDWD: 184 NOP

147 185 NOP

148 DEL 186

149 WEST 187 NWNWNWNWN:

150 NOP 188

226

189 NOR 227 NOP

190 WEST 228 NOP

191 NOP 229

192 NOP 230 East3:

193 231

194 NWNWNWN: 232 EAST

195 233 EAST

196 NOR 234 EAST

197 WEST 235

198 NOR 236 RETURN

199 WEST 237

200 238 WestWestNorth:

201 NWN: 239

202 240 WEST

203 NOR 241 WEST

204 WEST 242 NORTH

205 NOR 243

206 244 RETURN

207 RETURN 245

208 246 WestWestBack:

209 FrontEast5: 247

210 248 WEST

211 FRONT 249 WEST

212 CALL East5 250 BACK

213 251

214 RETURN 252 RETURN

215 253

216 East6: 254 NorthSNSNSNS3:

217 255

218 CALL East5 256 CALL NorthSNSNSNS

219 EAST 257 CALL NorthSNSNSNS

220 258

221 RETURN 259 NorthSNSNSNS:

222 260

223 East5: 261 NORTH

224 262 CALL SouthNorthSouth

225 EAST 263 NORTH

226 EAST 264

227

265 SouthNorthSouth: 303

266 304 END

267 SOUTH

268 NORTH

269 SOUTH

270

271 RETURN

272

273 NorthGatherNorthSouth:

274

275 CALL NorthGatherNorth

276 SOUTH

277

278 RETURN

279

280 NorthGatherNorth:

281

282 NORTH

283 GATHER

284 NORTH

285

286 RETURN

287

288 ENN:

289

290 EAST

291 NORTH

292 NORTH

293

294 RETURN

295

296 WestBackSouth:

297

298 WEST

299 BACK

300 SOUTH

301

302 RETURN

228

B.2 1 to 4 Pulse Converter

This subroutine constructs a mechanism that converts a single signal pulse into a sequence

of 4 signal pulses as described in section 4.3.6. This listing includes all other subroutines

that are called. The listing is 64 instruction words long.

001 Pulser1to4: 033 NORTH

002 034 NORTH

003 CALL SE_SDSD 035 BACK

004 036 BACK

005 NORTH 037 ORIENT NE

006 NORTH 038

007 ORIENT FS 039 DelSouthFEDelSouthSEDel:

008 UFS 040

009 SOUTH 041 DEL

010 SLI 042 CALL SouthFEDelSouthSEDel

011 043

012 NORTH 044 RETURN

013 045

014 FRONT 046 SouthFENor:

015 FRONT 047

016 ORIENT NE 048 SOUTH

017 DEL 049 ORIENT FE

018 CALL SouthFENor 050 NOR

019 NORTH 051

020 052 RETURN

021 BACK 053

022 BACK 054 SouthFEDel:

023 FRONT 055

024 FRONT 056 SOUTH

025 057 ORIENT FE

026 ORIENT BS 058 DEL

027 FUS 059

028 CALL SouthFENor 060 RETURN

029 SOUTH 061

030 ORIENT BN 062 SouthFEDelSouthSEDel:

031 SLI 063

032 064 CALL SouthFEDel

229

065 NOP

066 NOP

067

068 SouthSEDel:

069

070 SOUTH

071 ORIENT SE

072 DEL

073

074 RETURN

075

076 DSD:

077

078 DEL

079 SOUTH

080 DEL

081

082 RETURN

083

084 SE_SDSD:

085

086 ORIENT SE

087 NOP

088 NOP

089 NOP

090

091 SDSD:

092

093 SOUTH

094 CALL DSD

095

096 RETURN

097

098 END

Bibliography

[1] Andrew Adamatzky. Collision Based Computing. Springer-Verlag, London, 2002.

[2] Bruce Alberts, Dennis Bray, Julian Lewis, Martin Raff, Keith Roberts, and James D.
Watson. Molecular Biology of the Cell, Third Edition, pages 863–946. Garland Pub-
lishing Inc, New York, 1994. These pages describe the cell division cycle.

[3] Bruce Alberts, Dennis Bray, Julian Lewis, Martin Raff, Keith Roberts, and James D.
Watson. Molecular Biology of the Cell, Third Edition, pages 3–11. Garland Publishing
Inc, New York, 1994. These pages discuss the origin of life.

[4] Michael A Arbib. Machines which compute and construct. In Theories of Abstract
Automata, chapter 10, pages 355–361. Prentice-Hall, Englewood Cliffs, New Jersey,
1969.

[5] Charles Babbage. Passages from the Life of a Philosopher, chap-
ter 8. Longman, Green, Longman, Roberts and Green, 1864. URL
http://www.fourmilab.ch/babbage/lpae.html (visited on 20th October 2009).

[6] Mark Bedau. Artificial Life. MIT Press, Cambridge, Massachusetts.

[7] Jean-Luc Beuchat and Jacques-Olivier Haenni. Von Neumann’s 29-state cellular au-
tomaton: a hardware implementation. IEEE Transactions on Education, 43(3):300–
308, 2000.

[8] Nick Bostrom. Existential Risks - Analyzing human extinction scenarios and related
hazards. Journal of Evolution and Technology, 9, 2002.

[9] Adrian Bowyer. The self-replicating rapid prototyper - Manufacturing for the masses.
In Proceedings of the 8th National Conference on Rapid Design, Prototyping and
Manufacturing. Rapid Prototyping and Manufacturing Association, 2007.

[10] William R Buckley. Signal crossing solutions in von Neumann self-replicating cellular
automata. In Automata 2008, pages 453–501. Luniver Press, Frome, UK, 2008.

[11] Arthur W Burks. In Essays on Cellular Automata, chapter 1. University of Illinois
Press, Urbana, Illinois, 1970.

[12] John Byl. Self-reproduction in small cellular automata. Physica D, 34:295–299, 1989.

231

[13] Alexander Graham Cairns-Smith. Seven Clues to the Origin of Life. Camridge
University Press, Cambridge, 1985.

[14] E F Codd. Cellular Automata. Academic Press, New York, 1968.

[15] J Devore and R Hightower. The devore variation of the codd self-replicating
computer, 1992. Original work carried out in the early 1970s but never pub-
lished. Presented at the Third Workshop on Artificial Life, Santa Fe, New
Mexico. An implementation of Devore’s machine is available at the following
URL: http://code.google.com/p/ruletablerepository/wiki/TheRules (visited 8th May
2010).

[16] A K Dewdney. The planiverse project: Then and now. The Mathematical Intelli-
gencer, 22(1):46–51, 2000.

[17] K E Drexler. Engines of Creation: The Coming Era of Nanotechnology. Anchor
Press/Doubleday, New York, 1986.

[18] K E Drexler. Biological and nanomechanical systems: Contrasts in evolutionary
capacity. In Artificial Life, pages 501–519, Reading, Massachusetts, 1989. Addison-
Wesley.

[19] K E Drexler. Nanosystems. John Wiley and Sons, New York, 1992.

[20] E Fredkin and T Toffoli. Conservative logic. Journal of Theoretical Physics,
21(3,4):219–253, 1982.

[21] Robert A Freitas. A self-replicating interstallar probe. Journal of the British Inter-
planetary Society, 33:251–264, 1980.

[22] Robert A Freitas and William P Gilbreath. Advanced automation for space
missions. NASA Conference Publications, CP-2255 (N83-15348), 1982. URL
http://www.islandone.org/MMSG/aasm/ (visited on 22nd October 2009).

[23] Robert A Freitas and William P Gilbreath. Advanced automation for space missions.
NASA Conference Publications, CP-2255 (N83-15348):253–257, 1982.

[24] Robert A Freitas and Ralph C Merkle. Kinematic Self-Replicating Machines. Landes
Bioscience, Georgetown, Texas, 2004.

[25] Gosper. Exploiting regularities in large cellular spaces. Physica D: Nonlinear Phe-
nomena, 10(1-2):75–80, January 1984.

[26] Saul Griffith, Dan Goldwater, and J M Jacobson. Robotics: Self-replication from
random parts. Nature, 437:636, 2005.

[27] Gabor T Herman. On universal computer constructors. Information Processing
Letters, 2:61–64, 1973.

[28] Tim Hutton. Evolvable self-replicating molecules in an artificial chemistry. Artificial
Life, 8(4):341–356, 2002.

232

[29] M C Jewett and G C Church. In vitro integration of ribosomal RNA synthesis,
ribosome self-assembly and protein synthesis. Nature, 2009.

[30] John Kavanagh and Wendy Hall. Grand Challenges in Computing Research - GC7:
Journeys in Non-Classical Computation. UK Computing Research Committee, 2008.

[31] John G Kemeny. Man viewed as a machine. Scientific American, 192(4):58–67, 1955.

[32] D Kirschner, Y Iwasa, and L Wolpert. Journal of Theoretical Biology. Elsevier.

[33] F W Kistermann. Abridged multiplication - the architecture of Wilhelm Schickard’s
calculating machine of 1623. Vistas in Astronomy, 28(1-2):347–353, 1985.

[34] John R Koza. Artificial life: Spontaneous emergence of self-replicating and evolution-
ary self-improving computer programs. In Artificial Life III, pages 225–262, Reading
Massachusetts, 1994. Addison-Wesley.

[35] Richard Laing. Some alternative reproductive strategies in artificial molecular ma-
chines. Journal of Theoretical Biology, (54):64–84, 1975.

[36] Richard Laing. Automaton self-reference. PhD thesis, State University of New York,
1978. URL http://hdl.handle.net/2027.42/6125 (visited on 22nd October 2009).

[37] C G Langton. Self-reproduction in cellular automata. Physica D, 10:135–144, 1984.

[38] C Y Lee. A Turing machine that prints its own code script. In Proceedings of the
Symposium on the Mathematical Theory of Automata, pages 155–164, Brooklyn, New
York, 1963. Polytechnic Press.

[39] Kiju Lee, Matt Moses, and Gregory S Chirikjian. Robotic self-replication in
structured environments: Physical demonstrations and complexity measures. The
International Journal of Robotics Research 2008, 27(3-4):387–401, 2008. URL
http://ijr.sagepub.com/cgi/content/abstract/27/3-4/387 (visited on 22nd October
2009).

[40] Michael T Madigan, John M Martinko, and Jack Parker. Brock Biology of Microor-
ganisms, Tenth Edition, chapter 14, page 442. Pearson Prentice-Hall, Upper Saddle
River, New Jersey, 2003.

[41] B McMullin. John von Neumann and the evolutionary growth of complexity: Looking
backwards, looking forwards... In Artificial Life VII: Proceedings of the Seventh
International Conference, pages 467–476, Boston Massachusetts, 2000. MIT Press.

[42] Ralph C Merkle. A proposed metabolism for a hydrocarbon assembler. Nanotechnol-
ogy, 8:149–162, 1997.

[43] N M Morris. Logic Circuits, pages 180–195. McGraw-Hill, London, 1971.

[44] M Moses. A physical prototype of a self-replicating universal constructor. Master’s
thesis, Department of Mechanical Engineering, University of New Mexico, 2001.

233

[45] K Nakamura. Asynchronous cellular automata and their computational ability. Syst.
Comput. Contr., 5(5):58–66, 1974.

[46] Renato Nobili. The cellular automata of John von Neumann.
http://www.pd.infn.it/ rnobili/wjvn/index.htm (visited on 12th July 2009).

[47] Lionel S Penrose. Self-reproducing machines. Scientific American, 200(6):105–114,
1959.

[48] Lionel S Penrose and Roger Penrose. A self-reproducing analogue. Nature,
179(4571):1183, 1957.

[49] Umberto Pesavento. An implementatin of von Neumann’s self-reproducing machine.
Artificial Life, 2(4):337–354, 1995.

[50] C A Petri. Kommunikation mit Automaten. PhD thesis, University of Bonn, 1962. In-
formation about petri nets is also available at http://en.wikipedia.org/wiki/Petri net
(visited on 22nd October 2009).

[51] Chris Phoenix and Eric Drexler. Safe exponential manufacturing. Nanotechnology,
15:869–872, 2004.

[52] James A Reggia, Steven L Armentrout, Hui-Hsien Chou, and Yun Peng. Two-
dimensional cellular automaton with either 6 or 8 states per cell and a neighbourhood
of either 5 or 9 cells. Science, 259:1282–1287, 1993.

[53] R Rojas. Konrad Zuse’s legacy: The architecture of the Z1 and Z3. IEEE Annals of
the History of Computing, 19(2), 1997. URL http://www.epemag.com/zuse/ (visited
on 22nd October 2009).

[54] Paul W. K. Rothemund. Folding DNA to create nanoscale shapes and patterns.
Nature, 440(7082):297–302, Mar 2006.

[55] Moshe Sipper. Fifty years of research on self-replication: An overview. Artificial Life,
4(3):237–257, 1998.

[56] Richard Smalley. Of chemistry, love and nanobots. Scientific American, 285:76–77,
2001.

[57] Richard Smalley. K Eric Drexler and Richard E Smalley square off on the possibility
of molecular assemblers. Chemical and Engineering News, 81(48):37–42, 2003.

[58] Arnold Smith, Peter Turney, and Robert Ewaschuk. Self-replicating machines in
continuous space with virtual physics. Artificial Life, 9:21–40, 2003.

[59] Susan Stepney. The neglected pillar of material computation. Physica D: Nonlinear
Phenomena, 237(9):1157–1164, July 2008.

[60] William M Stevens. Nodes: An environment for simulating kinematic self-replicating
machines. In Proc. 9th International Conference on the Simulation and Synthesis of
Living Systems., pages 39–44, Boston Massachusetts, 2004. MIT Press.

234

[61] William M Stevens. Simulating self-replicating machines. Journal of Intelligent and
Robotic Systems, 49(2):135–150, 2007.

[62] William M Stevens. Logic circuits in a system of repelling particles. International
Journal of Unconventional Computing, 4(1):61–77, 2008.

[63] William M Stevens. A kinematic Turing machine. International Journal of Uncon-
ventional Computing, 5(2):145–163, 2009.

[64] William M Stevens. Parts closure in a kinematic self-replicating programmable con-
structor. Artificial Life and Robotics, 13(2):508–511, 2009.

[65] James W Thatcher. Universality in the von Neumann cellular model
: Technical Report 03105-30-T. University of Michigan, 1964. URL
http://hdl.handle.net/2027.42/7923 (visited 22nd October 2009).

[66] Alan M Turing. On computable numbers with an application to the entschei-
dungsproblem. Proceedings of the London Mathematical Society, 42:230–265, 1936.
Corrections, ibid, vol 43, pp 544-546, 1937.

[67] Peter Turney and Robert Ewaschuk. Self-replication and self-assembly for manufac-
turing. Artificial Life, 12:411–433, 2006.

[68] John von Neumann. Re-evaluation of the problems of complicated automata - prob-
lems of heirarchy and evolution (Fifth Illinois Lecture - December 1949). Papers of
John von Neumann on Computing and Computer Theory, pages 477–490, 1987.

[69] John von Neumann. Letter to Norbert Wiener from John von Neumann dated Novem-
ber 29th 1946. Proceedings of Symposia in Applied Mathematics, 52:506–512, 1997.

[70] John von Neumann and Arthur W Burks. Theory of Self-Reproducing Automata.
University of Illinois Press, Urbana, Illinois, 1966.

[71] John von Neumann and Arthur W Burks. Theory of Self-Reproducing Automata,
pages 81–82. University of Illinois Press, Urbana, Illinois, 1966. These pages describe
von Neumann’s kinematic model.

[72] Norbert Wiener. Cybernetics, or Control and Communication in the Animal and the
Machine. John Wiley and Sons Inc, New York, 1948.

[73] Edmund Beecher Wilson. Atlas of fertilization and karyokinesis of the ovum. The
American Naturalist, 29(348):1075–1076, 1895.

[74] Victor Zykov, Efstathios Mytilinaios, Bryant Adams, and Hod Lipson. Self-
reproducing machines. Nature, 435:163–164, 2005.

