
A Programmable Constructor in a Kinematic Environment
William M. Stevens

Dept. of Physics and Astronomy, Open University, Milton Keynes, England, MK7 6AA

william@stevens93.fsnet.co.uk
www.srm.org.uk

Abstract

It has been conjectured that self-replicating systems will enable complex
macroscale objects to be made in a reasonable time using nanoscale
assembly processes [1]. Self-replicating systems might also be used within
reconfigurable structures on any scale, such as micro-circuits.

An abstract model of a programmable constructor in a kinematic simulation
environment is presented. This programmable constructor can form the basis
of a self-replicating system in the same environment.

The simulation environment is a 3D moveable finite automaton in which cubic
parts can be placed into a discrete space and connected together to make
machines.

There are 6 types of part, each type performs one of the following simple
logical and mechanical functions: signal propagation, NOR-function, rotation,
connection, disconnection, motion.

The programmable constructor can take a disorganised collection of parts as
its input and construct machines from these parts according to a sequence of
instructions.

1. Introduction

In a lecture given at the University of Illinois in 1949 [2], mathematician John
von Neumann proposed a framework for studying the logical, kinematical and
mechanical aspects of machines capable of constructing other machines.
Later, he decided to concentrate on the purely logical aspects of the design of
a universal programmable constructor, able to construct arbitrary automata
within its environment of operation. Under the control of a particular program,
this automaton could construct a duplicate of itself. The machine was an
abstract mathematical entity, designed to operate within a cellular automaton
environment. The design contained approximately 200,000 cells [3].

Several other researchers since von Neumann have investigated self-
replication using cellular automata. E.F. Codd [4] produced a design similar to
von Neumann's in a cellular environment with fewer states per cell. Starting
from Codd's environment, Langton showed that self-replication becomes
trivial if the requirements for universal construction and universal computation
are dropped [5]. Langton's self-replicating loop consisted of 86 cells with 8
states per cell.

It must be mentioned here that different researchers have had different
reasons for investigating self-replicating systems even though they have used
similar methods and similar environments. As part of a larger endeavour to
elucidate aspects of a general theory of automata, von Neumann was
interested in designing an automaton able to construct arbitrary automata
within a domain of operation. Small additions to such an automata enable it to
construct a replica of itself. Langton was interested in demonstrating a very
simple system having the capacity for self-replication and nothing more.
McMullin [6] explains some of the differences between the goals of von
Neumann and Langton.

There have been several studies of physical self-replication, and a handful of
self-replicating devices have been built. Penrose's wooden blocks [7], and the
electro-magnetic catalyst of Morowitz [8] are template-based replication
schemes. In these systems, a particular configuration of two or more parts
serves as a base upon which a replica is formed when the configuration is
placed in a container full of parts and agitated. Chirikjian et al. [9] devised a
robot capable of building a replica of itself from a small number of pre-
assembled subsystems. In the three systems just described the input parts
upon which the self-replicating devices operate are not much less complex
than the devices themselves. Also, the devices are not designed to have any
constructional capability. In these devices the problem of physical self-
replication is a self-assembly problem in which the parent device catalyses
the self-assembly of its offspring. This kind of self-replication is distinct from
the kind of self-replication that arises as a special case of automated
construction.

Other studies have addressed automated physical construction, often with
self-replication as an ancillary goal. Moses [10] designed a set of 11 different
types of block from which a constructing device could be built. This device
operated on the same types of block from which it was built, and was
controlled by a computer outside the constructor's domain of operation. Each
block contained a single functional component. For example, there was a
block containing a motor, a block containing a cog and a block containing a
single-axis movable rod. Toth-Fejel [11], Murata [12], Zykov et al. [13] and
others have proposed or built systems consisting of identical modules, each
containing a microprocessor to control both communication between modules
and movement of one module relative to another. In such systems, self-
replication is a matter of providing a program P for the modules of a machine
M which causes M to move in such a way as to cause an unorganised
collection of modules to take on the same configuration as the machine M,
and then copy the program P into the duplicate machine.

Earlier papers by the author [14,15] described two simulation environments
called Nodes and CBlocks that can be regarded as being part way between
physically unrealistic but easy-to-reason-about cellular automaton
environments and physical environments with movable parts. CBlocks is a
two-dimensional discrete space environment similar to the environment
described in this paper. Nodes is a two-dimensional continuous space

environment. Both CBlocks and Nodes contain a part that is able to create
any other part from nothing when fed with a signal encoding the part to be
created. Self-replicating systems were demonstrated in both of these
environments.

Freitas and Merkle's book 'Kinematic Self-Replicating Machines' [16] contains
a comprehensive summary of all published work on self-replicating systems to
date.

This paper presents an environment called CBlocks3D. In common with
cellular automata environments, CBlocks3D allows the logical and
geometrical structure of automata to be studied. CBlocks3D also allows some
of the kinematical aspects of automata to be studied. This paper shows how a
programmable constructor can be implemented in CBlocks3D, and how this
constructor could be modified to implement a self-replicating system.

2. The CBlocks3D simulation environment

CBlocks3D is a three-dimensional discrete-space, discrete-time moveable
finite automaton environment. Cubic parts in this environment can be
connected together to make machines. There are 6 different part types.
Binary signals can pass between the faces of neighbouring parts. It takes one
time step for a part to respond to an input signal. In a single time step, a part
may move one unit in any one of six directions. When a part moves, all parts
directly or indirectly connected to it also move. Systems with similar laws of
motion have also been used by Arbib [17] and by Thompson and Goel [18].

Each part has the following properties:
● Type: one of the 6 types described in Table 1.
● Orientation : A part may be in one of 24 possible orientations. For parts

which have rotational symmetry, some of these orientations will be
indistinguishable.

● Connectivity : Each face of a part may be connected to the face of a
neighbouring part.

● Outputs : The 'Delta' and 'Nor' part types can produce output signals in
response to particular input signals.

Table 1 describes the function of each of the six types of part. In Table 1, the
letters N,E,S,W,F and B are used to refer to the value of the input signal at the
North, East, South, West, Front or Back faces of the part. North is up the
page, South is down the page, East is to the right of the page, West is to the
left of the page, Back is into the page, Front is out of the page.

Delta
N,E,W,F,B := S

Nor
N := ¬(E v W v F v B v S)

Slide
If S, slide part lying
North one unit East

Rotate
If S, rotate part lying

North about the South-
North axis in an

anticlockwise direction.

Fuse
If S, fuse parts lying

North and North-East

UnFuse
If S, unfuse parts lying
North and North-East

Table 1. Part types in the CBlocks3D environment.

The Delta, Nor and Rotate parts have rotational symmetry about the North-
South axis and can therefore be in any one of 6 behaviourally distinct
orientations. The Slide, Fuse and Unfuse parts have no rotational symmetry,
and can therefore be in any one of 24 behaviourally distinct orientations. The
term 'main axis' is used to refer to the axis of a part on which the input lies,
going from South to North in Table 1.

Table 2 shows two simple machines that can be made with these parts.

Part Path
A single pulse applied to the input will cause the part at the part input to be

transferred to the part output.

Set/Reset/Toggle Flip-Flop
This machine has two stable states. A sequence of four 1 signals at the

toggle input will switch the machine from one state to the other. The machine
can also be set or reset by applying a sequence of four 1 signals to the

appropriate inputs.
Table 2. Two simple machines in the CBlocks3D environment.

The Delta and Nor parts can be used together to make logic circuits. It can be
shown that any computation that can be performed by a Turing machine with
a finite tape can be performed by a suitable arrangement of Delta and Nor
parts.

3. A Programmable Constructor

A programmable constructor has been designed and implemented in the
CBlocks3D environment. This constructor contains a sequence of instructions
which directs the machine to build other machines, part by part. The machine
obtains its parts from a disorganised collection, and is capable of
discriminating between parts and storing parts for later use.

Figure 1 shows a schematic diagram of the programmable constructor.

Toggle input

Output

Inverted output

If the bottom left corner of this component is at x=0, y=0, then the
Front (or Back faces) of the Nor parts at x=1,y=1 and x=1,y=2
can serve as Set and Reset inputs respectively.

InputOutput

Part
Output

Part
Input

Figure 1. A schematic diagram of the programmable constructor. Three-letter abbreviations
are used for parts: sli = slide, rot = rotate, nor = nor, del = delta, fus = fuse, ufs = unfuse.

In Figure 1, dashed lines represent signal paths made from Delta parts (and
occasional Nor parts). Solid lines represent paths along which individual parts
travel, similar to the 'Part path' in table 2.

The constructor has two operating modes: Gather mode and Construct mode.
In Gather mode the constructor moves around its environment encountering
parts, classifying them and storing them. In Construct mode the constructor
builds machines using parts from its store. The constructor switches from
Construct mode to Gather mode when the control unit executes a 'GATHER'
instruction. The constructor switches from Gather mode to Construct mode
when all of its part storage hoppers are full.

The Detector is active when the constructor is in Gather mode, and is
responsible for moving the constructor around in its environment and
detecting that a part has been encountered. When a part is encountered, the
Detector passes the part to the first Filter and waits for the part to be sorted
and stored.

F(x) are Filters for the 6 different types of part. The Filters are arranged one
after another in a line, and parts pass through them one by one. Each filter
can detect a single part that is oriented in a subset of the part's behaviourly-
distinct orientations. For example, F(sli) can detect a slide part in any of the
four orientations in which the input to the part is to the North (upside-down
compared to the diagram in table 1). When a filter detects a part, the part is
diverted to a Hopper (after being placed into a known orientation).

The Rotator is a mechanism that will cycle parts through all 24 possible
orientations. If a part passes through all filters without being detected, it is
rotated by the Rotator and sent back to the first filter to repeat the process.

Rotator
Detector

Control Unit

Construction
Arm

Orientating
Mechanism

H(sli) H(rot) H(nor) H(del) H(fus) H(ufs)

F(sli) F(rot) F(nor) F(del) F(fus) F(ufs)

H(x) are Hoppers for the 6 different part types. When a Hopper receives an
input part, it joins the part onto the collection of parts that it contains. In
response to a specific signal, a Hopper will dispense a part from its collection.
When a part is dispensed from a Hopper it will pass through the Orientating
Mechanism and then to the Construction Arm.

The Orientating Mechanism contains a 5-bit register that is set by an
'ORIENT' instruction. When a part passes through the Orientating
Mechanism, it will be set to the orientation specified in the register.

The Construction Arm is an arm with a Tip that can be instructed to move to
and fro in all 3 dimensions. The Construction Arm will pass a part that it is
given to its Tip. The Tip contains 'fuse' parts which will join the part to the
machine being constructed.

The Control Unit contains memory and logic for executing a sequence of
instructions. Figure 2 shows a schematic diagram of the Control Unit.

Figure 2. Schematic diagram of the control unit.

The Read-Only Memory contains 128 5-bit words. The memory architecture
is similar to the delay-line architecture that was used in early electronic
computers. Each bit-plane of the memory is a folded loop of 128 Delta parts.
A pattern of 128 bits in this loop will cycle continuously around the loop. The
loop contains an output tap at a particular point. The Address Counter is a 7-

=

1:4

1:4

Read
Inhibit

FF Gather
FF

Address
Register

Address
Counter

Read-Only
Memory

Inhibit Detector S

R

Q

Q
S R

Q

Value

Value

Count-inCount-out

GatherOrient

Move Arm

Dispense

Decoders

Full

bit counter that increments every time step. Therefore, the Address Counter
specifies which of the 128-bits in the memory loop is currently on the output
tap. By comparing the Address Counter with the Address Register, a read
pulse can be generated when the bit addressed by the Address Register is on
the output tap. This pulse can be ANDed with the signal from the output tap to
extract the addressed bit from the memory loop.

The Address Register is a 7-bit counter that increments by one when a
sequence of four '1' pulses is fed into its 'count-in' input.

The components labelled '1:4' in figure 2 are pulse lengtheners, that output a
sequence of four '1' pulses in response to a single '1' pulse.

The Read Inhibit Flip Flop in figure 2 is used to prevent a false read pulse
shortly after an increment signal is applied to the Address Register, when the
Address Register passes through transient states. The Read Inhibit Flip Flop
is also used to prevent the execution of instructions when the constructor is in
Gather mode.

The Gather Flip Flop in figure 2 is set when the 'GATHER' instruction is
executed, and reset when all of the part storage hoppers are full. This Flip
Flop is used to prevent the Read Inhibit Flip Flop from being reset when the
constructor is in Gather mode and also to inhibit the detector when the
constructor is in Construct mode.

The Decoders are used to decode 5-bit instructions. The Gather Decoder
outputs a single pulse when a 'GATHER' instruction is executed. The Orient
Decoder responds to an 'ORIENT' instruction by inhibiting all of the other
decoders during the next memory-read cycle and then storing the next word
retrieved from the memory in a 5-bit register. 5 signal paths from this register
go to the Orientating Mechanism shown in figure 1.

The Dispense and 'Move Arm' Decoders respond to 'DISPENSE' and
'MOVE' instructions respectively and both output serially encoded signals. For
example, in response to a 'DISPENSE p' instruction, where p is a part and is
encoded using the three bits xyz, the Dispense Decoder will output the
sequence '1000x0y0z01', and this sequence will be fed to every Hopper. Each
Hopper H(p) responds to a different sequence of this form by dispensing a
part contained in the Hopper.

Instructions are encoded using 5-bits. The 'ORIENT' instruction requires 2 5-
bit words. Table 3 lists the instructions supported by the programmable
constructor.

Instruction Encoding Notes
NOP 01111 No operation

GATHER 00111 Switch the constructor into Gather mode
to start collecting and storing parts. When
all of the hoppers are full the constructor

will return to Construct mode and
continue executing instructions.

ORIENT 10000 xxxxx xxxxx specifies the orientation.
MOVE 00xxx xxx specifies the direction in which to

move the construction arm:
000 = Back, 001 = North, 010 = Front,
011 = South, 100 = East, 110 = West

DISPENSE 01xxx xxx specifies the part type to dispense:
000 = slide, 010 = rotate, 011 = delta,
100 = nor, 101 = fuse, 110 = unfuse

Table 3. Instructions supported by the programmable constructor.

Figure 3 is a graphical representation of the programmable constructor.
(Compare this to the schematic diagrams in Figures 1 and 2).

Figure 3. A graphical representation of the programmable constructor.

The constructor is made from 5040 parts, with the following numbers of each
type of part:

3531 Delta parts (of which 640 make up the Memory) (Yellow)
688 Nor parts (Green)
676 Slide parts (Red)
23 Rotate parts (Cyan)
63 Fuse parts (White)

59 UnFuse parts (Grey)

These figures include 14 of each part type that are present as initial contents
of the constructor's hoppers. Those reading this paper in colour can identify
the part types in Figures 3 and 4. The input face of a part is coloured blue, the
business end of a part is coloured using the colours given above.

4. Example

Before giving an example program for the constructor, it is necessary to
describe the Construction Arm in more detail.

Figure 4. The 3-axis Construction Arm and Construction Tip. This view is from the Back
direction, so East is to the left of the page, West is to the right of the page and Front is into

the page.

Figure 4 is a graphical representation of the Construction Arm. To the right of
the page is the path which connects the Construction Arm to the rest of the
programmable constructor, and along which parts are fed to the Construction
Arm. Three orthogonal paths can be seen in Figure 4. At the end of the first
path and also at the end of the second path (i.e. the Front-Back path and the
East-West path) is a mechanism which moves the adjoining path back and
forth in response to a serially encoded signal. The Construction Tip is
attached to the end of the North-South path by a similar movement
mechanism.

The Construction Tip can therefore be positioned anywhere within the limits of
the arm. The Construction Tip contains four Fuse parts which connect a newly
placed part to other parts. A newly placed part will be connected to the part to
its north, the part to its south, the part to its west, and the part to its back, if
any of these parts exist.

The Fuse part which connects the back of a newly placed part to the part
behind protrudes from the Construction Tip so as to be level (in the front-back

Parts are fed to
the Construction
Arm here.

Construction Tip

direction) with the newly placed part, and lies to the east of the newly placed
part. Therefore, construction of machines must proceed in a west-to-east
fashion, otherwise this part of the Construction Tip would push the machine
under construction along.

Machines can be constructed in layers, with each layer being constructed
from west-to-east as described in the previous paragraph. When a layer is
complete, the whole construction can be pushed back one unit and the next
layer begun. In this way, machines of arbitrary extent along the Front-Back
axis can be constructed.

Table 4 gives a sequence of instructions that cause the programmable
constructor to construct the Set/Reset/Toggle Flip-Flop shown in table 2.

MOVE West
MOVE West
MOVE West
MOVE West
ORIENT NE
DISPENSE Del
NOP
MOVE South
ORIENT WN
DISPENSE Del
NOP
MOVE South
ORIENT SE
DISPENSE Del
NOP
MOVE South
DISPENSE Del
NOP

MOVE East
ORIENT EN
DISPENSE Nor
NOP
MOVE North
ORIENT NE
DISPENSE Nor
NOP
MOVE North
MOVE East
ORIENT WN
DISPENSE Nor
NOP
MOVE East
DISPENSE Nor
NOP
MOVE North
MOVE West

ORIENT EN
DISPENSE Nor
NOP
MOVE West
MOVE East
DISPENSE Del
NOP
MOVE South
MOVE East
MOVE East
ORIENT NE
DISPENSE Del
NOP
MOVE South
MOVE West
MOVE South
DISPENSE Nor
NOP

MOVE North
ORIENT WN
DISPENSE Nor
NOP
MOVE East
DISPENSE Del
NOP
MOVE East
DISPENSE Nor
NOP
MOVE South
MOVE West
MOVE West
MOVE West

Table 4. A sequence of 68 instructions (encoded in 77 5-bit words) used to construct a
Set/Reset/Toggle Flip-Flop

Notice that every 'ORIENT' instruction is followed by two letters. These letters
represent the value that the register in the Orientating Mechanism is to be set
to, and therefore the orientation that any part passing through the Orientating
Mechanism will be given. The first letter is the direction in which the part's
main axis is to point. The second letter gives the orientation of the part around
its main axis.

Notice also that a 'NOP' instruction is executed after every 'DISPENSE'
instruction. This is because it can take longer than a single instruction cycle
for a part to be dispensed from a hopper and passed to the Tip of the
Construction Arm.

5. Self-Replication

5.1 Requirements for Self-Replication

If the constructor can be developed into a self-replicating system, the
following requirements must be met:

a. The constructional capability of the Construction Arm must be such that all
of the subsystems of the constructor can be constructed and then assembled.

There is no limit on the spatial arrangement of the parts that the Construction
Arm places within its domain of operation. However, there are limits on the
connectivity state that the construction arm can give to its constructions. In
addition, where a construction needs to be set to an initial state, measures
may have to be taken to ensure that this state is set. The example
construction in section 4 illustrates the second point.

b. The domain of operation of the Construction Arm must be large enough to
allow a replica constructor to be constructed.

One way to achieve this is firstly to ensure that the dimensions of the
constructor are such that FB < NS < EW, where FB is the Front-Back span of
the constructor, NS is the North-South span of the replicator and EW is the
East-West span of the constructor. Secondly, the East-West reach of the
Construction Arm must be greater than or equal to NS, and the North-South
reach of the Construction Arm must be greater than or equal to FB. When a
parent constructor builds a child, the child is oriented as in figure 5, so that the
East-West and North-South spans of the child fit within the East-West and
North-South spans of the parent. This the same as the arrangement of parent
and child in the 'extruding brick' architecture described in section 4.11.3 of
[16].

Figure 5. Orientation of parent and child that allows the child to be extruded from the parent
constructor.

c. The description of the self-replicating constructor S (which includes
memory M as a subsystem) must fit within the memory M.

For this to be possible, a self-replicating machine derived from the
programmable constructor presented in this paper according to the outline
given in this section must support looping or subroutine calls. This is because

North

East
Back

Parent

Child

every part of a construction requires at least two 5-bit word instructions (one
instruction to move the Construction Arm and one instruction to dispense the
part) occupying ten Delta parts within the memory. Therefore the memory M
cannot contain enough instructions to construct a copy of M (let alone the rest
of S) unless instructions can be repeated or re-used.

5.2 Modifications for Self-Replication

To develop the constructor into a self-replicating system requires the following
modifications and additions (in addition to those mentioned above):

● The memory must be enlarged.
● A copying mechanism must be added to the memory so that the

sequence of instructions used to direct replication can be passed from
parent to child after replication is complete.

● Mechanisms must be added that reject a part if the hopper for the part
is full.

•

The performance of a self-replicating system derived from the programmable
constructor could be improved by making the following changes:

● The sorter could be modified so as to be able to deal with more than
one part at a time.

● The subsystems from which the constructor is built could be scrutinized
with a view to reducing the part count.

● The control unit could be modified to support both looping and
subroutine calls. (It is a logical requirement that either looping or
subroutine calls be supported, but for efficiency reasons it is desirable
to support both).

6. Conclusion

A programmable constructor has been demonstrated in an environment that
has some properties in common with the cellular automaton environments
that have previously been used to study construction and self-replication.
Unlike cellular automaton environments, the CBlocks3D environment supports
motion, and so problems to do with the transportation, management and
placement of parts can be addressed in the CBlocks3D environment.

Only six simple part types are needed to make a programmable constructor in
CBlocks3D. This is a considerable reduction compared with the 24 part types
used in Cblocks [15] and the 22 part types used in Nodes [14]. The six part
types can be classified into three groups. Firstly, there are parts that enable a
machine to make use of the kinematic features of the CBlocks3D environment
(i.e. motion and physical connection): Slide, Fuse and Unfuse parts.
Secondly, there are parts that propagate and process signals: Delta and Nor
parts. Thirdly, there is the Rotate part, which compensates for the fact that the
CBlocks3D environment does not have laws of motion that permit parts to
rotate.

The decision about which functions to choose for basic part types was
determined both by the characteristics of the CBlocks3D environment, and by
a need to have as small a set of part types as possible so as to minimize the
size of the sorting and storage mechanisms of the programmable constructor.
One natural question that arises when considering the choice of basic part
types is the question of whether the set of part types can be reduced further.
The Delta and Nor parts could be combined into a single part that both
propagates and processes signals. Alternatively, mechanical logic could be
used and signal processing parts could be done away with altogether (as
described below) but these seem to be the only simplifications that can be
made.

However, it is reasonable to suggest that changing the laws of the simulation
environment would change the range of part types needed. For example, a
continuous space environment like that used in the Nodes environment
permits machines to rotate, so the Rotate part may be made redundant. An
environment supporting force fields or snap-fit connectors might make the
Fuse and UnFuse parts redundant if connections between parts could be
made and broken by pushing and stretching.

The need for dedicated signal propagation and signal processing elements
could be removed by using mechanical logic. It can be shown that an
environment like CBlocks3D supporting only a single part type called S (S is
like the Slide part described in this paper, but with no input and continually
active) can be used to implement a machine that can perform any
computation that can be performed by a Turing machine with a finite tape.

The work described in this paper leads to the following questions:

1. Can the programmable constructor described here be developed into a
self-replicating system? (i.e. Can requirements a, b and c be met?)

2. Can a constructing automaton be made in an environment like CBlocks3D
using the single part type S if the environment is modified so that connection,
disconnection and rotation result from opposing or orthogonal forces applied
to a part?

3. Can a constructing automaton or a computing automaton be made in a
continuous space environment supporting a part like S with a suitable force
field between neighbouring parts?

7. References

1. K. Eric Drexler, Engines of Creation: The Coming Era of Nanotechnology,
Anchor Press/Doubleday, New York, 1986. http://www.foresight.org/EOC
2. John von Neumann, Theory of Self-Reproducing Automata, A.W. Burks,
ed., University of Illinois Press, Urbana, Illinois, 1966. Part 1, Lecture 5.

3. According to John R. Koza, “Artificial Life: Spontaneous Emergence of Self-
Replicating and Evolutionary Self-Improving Computer Programs”, Artificial
Life III, Addison-Wesley, Reading, Mass., 1994. pp 225-262.
4. E.F. Codd, Cellular Automata, Academic Press, New York, 1968.
5. Christopher G. Langton, “Self-reproduction in cellular automata,” Physica D
10, 1984. pp 135-144.
6. Barry McMullin, John von Neumann and the Evolutionary Growth of
Complexity : Looking Backwards, Looking Forwards..., Artificial Life VII, MIT
Press, Cambridge Mass. 2000. pp 467-476
7. L.S. Penrose, R. Penrose, “A self-reproducing analogue,” Nature 179, 8
June 1957. p 1183.
8. Harold J. Morowitz, “A model of reproduction,” American Scientist 47, June
1959. pp 261-263.
9. Jackrit Suthakorn, Andrew B. Cushing, Gregory S. Chirikjian, “An
autonomous self-replicating robotic system”, Proc. 2003 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics (AIM 2003),
Kobe, Japan, 2003.
10. Matt Moses, “A Physical Prototype of a Self-Replicating Universal
Constructor”, Master's Thesis, Department of Mechanical Engineering,
University of New Mexico, 2001.
http://www.home.earthlink.net/~mmoses152/selfrep.doc
11. Tihamer Toth-Fejel, “Modeling Kinematic Cellular Automata: An Approach
to Self-Replication”, NASA Institute for Advanced Concepts, 2004.
http://www.niac.usra.edu/files/studies/final_report/pdf/883Toth-Fejel.pdf
12. S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tominata, S.
Kokaji, “M-TRAN: Self-Reconfigurable Modular Robotic System”, IEEE/ASME
Transactions on Mechatronics, Vol 7, No. 4, 2002, pp 431-441.
13. V. Zykov, E. Mytilinaios, B. Adams, H. Lipson, Self-Reproducing
Machines, Nature, Vol. 435 No 7038, 2005, pp 163-164.
14. William M. Stevens, An Environment for Simulating Kinematic Self-
Replicating Machines, Artificial Life IX, MIT Press, Cambridge, Mass. 2004.
pp 39-44.
15. William M. Stevens. Unpublished work on CBlocks simulation
environment, 2005. http://www.srm.org.uk
16. Robert A. Freitas and Ralph C. Merkle, Kinematic Self-Replicating
Machines, Landes Bioscience, Georgetown, Texas, 2004.
17. Michael A. Arbib, Theories of Abstract Automata, Prentice-Hall,
Englewood Cliffs, NJ, 1969. Chapter 10. 'Machines Which Compute and
Construct'
18. Richard L. Thompson and Narenda S. Goel, Movable Finite Automata
(MFA) Models for Biological Systems I: Bacteriophage Assembly and
Operation, Journal of Theoretical Biology, Academic Press, No. 131, 1988. pp
351-385.

